Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import matplotlib.colors as mcolors
|
|
5 |
|
6 |
# Global constant for golden ratio
|
7 |
golden_ratio = (1 + np.sqrt(5)) / 2
|
|
|
8 |
|
9 |
def is_prime(n):
|
10 |
"""Check if a number is prime."""
|
@@ -23,43 +24,51 @@ def fib_sequence(n):
|
|
23 |
return fib_seq[2:] # Exclude first two numbers for this use case
|
24 |
|
25 |
def adjust_color_brightness(color, factor):
|
26 |
-
"""
|
27 |
-
|
28 |
-
return tuple(color)
|
29 |
|
30 |
def generate_colored_circle_template(num_circles):
|
|
|
31 |
fig, ax = plt.subplots(figsize=(6, 6))
|
32 |
ax.set_xlim(0, 1)
|
33 |
ax.set_ylim(0, 1)
|
34 |
ax.axis('off')
|
35 |
|
36 |
for i in range(num_circles):
|
37 |
-
radius = np.random.uniform(0.05, 0.
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
43 |
ax.add_artist(circle)
|
44 |
return fig
|
45 |
|
46 |
def generate_symmetrical_circle_layout(num_layers):
|
|
|
47 |
fig, ax = plt.subplots(figsize=(6, 6))
|
48 |
ax.set_aspect('equal')
|
49 |
ax.axis('off')
|
50 |
-
|
|
|
51 |
center = (0.5, 0.5)
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
56 |
x = center[0] + radius * np.cos(angle)
|
57 |
y = center[1] + radius * np.sin(angle)
|
58 |
-
|
|
|
59 |
ax.add_artist(circle)
|
60 |
return fig
|
61 |
|
62 |
def generate_fibonacci_spiral_layout(num_points):
|
|
|
63 |
fig, ax = plt.subplots(figsize=(6, 6))
|
64 |
ax.axis('off')
|
65 |
radius = 0.05
|
@@ -68,12 +77,14 @@ def generate_fibonacci_spiral_layout(num_points):
|
|
68 |
distance = np.sqrt(i) * radius
|
69 |
x = 0.5 + distance * np.cos(angle)
|
70 |
y = 0.5 + distance * np.sin(angle)
|
71 |
-
|
|
|
72 |
ax.add_artist(circle)
|
73 |
ax.set_aspect('equal')
|
74 |
return fig
|
75 |
|
76 |
def generate_prime_number_spiral(num_points):
|
|
|
77 |
fig, ax = plt.subplots(figsize=(6, 6))
|
78 |
ax.axis('off')
|
79 |
radius = 0.05
|
@@ -83,12 +94,14 @@ def generate_prime_number_spiral(num_points):
|
|
83 |
distance = np.sqrt(i) * radius
|
84 |
x = 0.5 + distance * np.cos(angle)
|
85 |
y = 0.5 + distance * np.sin(angle)
|
86 |
-
|
|
|
87 |
ax.add_artist(circle)
|
88 |
ax.set_aspect('equal')
|
89 |
return fig
|
90 |
|
91 |
def emoji_dynamics_and_number_theory_simulation(size):
|
|
|
92 |
fib_seq = fib_sequence(size**2)
|
93 |
grid = []
|
94 |
|
|
|
5 |
|
6 |
# Global constant for golden ratio
|
7 |
golden_ratio = (1 + np.sqrt(5)) / 2
|
8 |
+
color_wheel = plt.get_cmap('hsv') # Use the HSV color wheel for harmonious colors
|
9 |
|
10 |
def is_prime(n):
|
11 |
"""Check if a number is prime."""
|
|
|
24 |
return fib_seq[2:] # Exclude first two numbers for this use case
|
25 |
|
26 |
def adjust_color_brightness(color, factor):
|
27 |
+
"""Adjust the brightness of a color."""
|
28 |
+
return tuple(np.array(mcolors.to_rgb(color)) * factor)
|
|
|
29 |
|
30 |
def generate_colored_circle_template(num_circles):
|
31 |
+
"""Improved use of color and symmetry in circle generation."""
|
32 |
fig, ax = plt.subplots(figsize=(6, 6))
|
33 |
ax.set_xlim(0, 1)
|
34 |
ax.set_ylim(0, 1)
|
35 |
ax.axis('off')
|
36 |
|
37 |
for i in range(num_circles):
|
38 |
+
radius = np.random.uniform(0.05, 0.1)
|
39 |
+
angle = 2 * np.pi * i / num_circles
|
40 |
+
distance = np.sqrt(np.random.uniform(0.1, 0.9))
|
41 |
+
x = 0.5 + distance * np.cos(angle)
|
42 |
+
y = 0.5 + distance * np.sin(angle)
|
43 |
+
color = color_wheel(i / num_circles)
|
44 |
+
alpha = 0.6 + 0.4 * (1 - distance) # More transparent further out
|
45 |
+
circle = plt.Circle((x, y), radius, color=color, alpha=alpha)
|
46 |
ax.add_artist(circle)
|
47 |
return fig
|
48 |
|
49 |
def generate_symmetrical_circle_layout(num_layers):
|
50 |
+
"""Generate a more symmetrical circle layout."""
|
51 |
fig, ax = plt.subplots(figsize=(6, 6))
|
52 |
ax.set_aspect('equal')
|
53 |
ax.axis('off')
|
54 |
+
|
55 |
+
max_radius = 0.1 + 0.15 * (num_layers - 1) # Adjust so outer circles don't overlap the figure boundary
|
56 |
center = (0.5, 0.5)
|
57 |
+
|
58 |
+
for layer in range(num_layers):
|
59 |
+
radius = 0.05 + layer * 0.1
|
60 |
+
num_circles = layer * 6 if layer > 0 else 1 # Increase circles in outer layers
|
61 |
+
for i in range(num_circles):
|
62 |
+
angle = 2 * np.pi * i / num_circles
|
63 |
x = center[0] + radius * np.cos(angle)
|
64 |
y = center[1] + radius * np.sin(angle)
|
65 |
+
color = color_wheel(i / num_circles)
|
66 |
+
circle = plt.Circle((x, y), max_radius / num_layers, color=color, alpha=0.5 + 0.5 * (1 - layer / num_layers))
|
67 |
ax.add_artist(circle)
|
68 |
return fig
|
69 |
|
70 |
def generate_fibonacci_spiral_layout(num_points):
|
71 |
+
"""Generate layout based on Fibonacci spiral."""
|
72 |
fig, ax = plt.subplots(figsize=(6, 6))
|
73 |
ax.axis('off')
|
74 |
radius = 0.05
|
|
|
77 |
distance = np.sqrt(i) * radius
|
78 |
x = 0.5 + distance * np.cos(angle)
|
79 |
y = 0.5 + distance * np.sin(angle)
|
80 |
+
color = color_wheel(i / num_points)
|
81 |
+
circle = plt.Circle((x, y), radius, color=color, fill=True, alpha=0.8)
|
82 |
ax.add_artist(circle)
|
83 |
ax.set_aspect('equal')
|
84 |
return fig
|
85 |
|
86 |
def generate_prime_number_spiral(num_points):
|
87 |
+
"""Generate spiral layout highlighting prime numbers."""
|
88 |
fig, ax = plt.subplots(figsize=(6, 6))
|
89 |
ax.axis('off')
|
90 |
radius = 0.05
|
|
|
94 |
distance = np.sqrt(i) * radius
|
95 |
x = 0.5 + distance * np.cos(angle)
|
96 |
y = 0.5 + distance * np.sin(angle)
|
97 |
+
color = color_wheel(i / num_points)
|
98 |
+
circle = plt.Circle((x, y), radius, color=color, fill=True, alpha=0.8)
|
99 |
ax.add_artist(circle)
|
100 |
ax.set_aspect('equal')
|
101 |
return fig
|
102 |
|
103 |
def emoji_dynamics_and_number_theory_simulation(size):
|
104 |
+
"""Simulate emoji dynamics based on number theory."""
|
105 |
fib_seq = fib_sequence(size**2)
|
106 |
grid = []
|
107 |
|