Spaces:
Runtime error
Runtime error
File size: 2,261 Bytes
f360d45 be6697d f360d45 be6697d f360d45 be6697d f360d45 7741083 f360d45 be6697d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import streamlit as st
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from datetime import datetime
from base64 import b64encode
FOOD_LIST = {4: "๐", 6: "๐", 8: "๐ฎ", 10: "๐", 12: "๐ฉ", 20: "๐ฅ", 50: "๐ฃ", 100: "๐พ"}
DICE_TYPES = [4, 6, 8, 10, 12, 20, 50, 100]
DEFAULT_ROLLS = 3
def roll_dice(num_rolls, dice_type):
rolls = np.random.randint(1, dice_type + 1, size=num_rolls)
return rolls
st.title("๐ฒ Nutrition Dice Game for STEM and Math")
username = st.text_input("๐ค Enter your username:")
num_rolls = st.slider("๐ข Choose the number of rolls:", 1, 100, DEFAULT_ROLLS)
history = {"health_tokens": [0], "coin_tokens": [0]}
for dice_type in DICE_TYPES:
rolls = roll_dice(num_rolls, dice_type)
highest_rolls = sum(roll == dice_type for roll in rolls)
coin_tokens_added = 0
dice_results = [f"{FOOD_LIST[dice_type]} {roll}" for roll in rolls]
st.write(f"๐ฐ Results for {dice_type}-sided slot machine: {' | '.join(dice_results)}")
for roll in rolls:
if roll == dice_type:
st.write(f"๐ Congratulations! You got the {FOOD_LIST[dice_type]} jackpot! ๐ฐ Adding 3 coins.")
coin_tokens_added += 3
if roll == max(rolls):
st.write(f"๐ Congratulations! You got the {FOOD_LIST[dice_type]} maximum value! ๐ Adding 10 health tokens.")
if dice_type == 100:
history["health_tokens"].append(history["health_tokens"][-1] + 10)
history[f"{dice_type}-sided slot machine jackpots"] = highest_rolls
history["roll_history"] = {**history.get("roll_history", {}), dice_type: rolls}
history["coin_tokens"].append(history["coin_tokens"][-1] + coin_tokens_added)
st.write("๐ฐ๐ Token Accumulation:")
df = pd.concat([pd.DataFrame(history["roll_history"]), pd.DataFrame(history["health_tokens"], columns=["Health Tokens"]), pd.DataFrame(history["coin_tokens"], columns=["Coin Tokens"])], axis=1)
timestamp = datetime.now().strftime("%m-%d-%Y-%H-%M-%S")
filename = f"{username}_{timestamp}.csv"
df.to_csv(filename, index=False)
st.markdown(f'<a href="data:file/csv;base64,{b64encode(open(filename, "rb").read()).decode()}" download="{filename}">Download CSV File</a>', unsafe_allow_html=True) |