awacke1's picture
Update app.py
9f66be1
raw
history blame
2.89 kB
import streamlit as st
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from datetime import datetime
from base64 import b64encode
# Define general functions
FOOD_LIST = {4: "๐Ÿ”", 6: "๐ŸŸ", 8: "๐ŸŒฎ", 10: "๐Ÿ•", 12: "๐Ÿฉ", 20: "๐Ÿฅ—", 50: "๐Ÿฃ", 100: "๐Ÿพ"}
def roll_dice(num_rolls, dice_type):
rolls = np.random.randint(1, dice_type + 1, size=num_rolls)
return rolls
def plot_tokens(health_tokens, coin_tokens):
fig = go.Figure()
fig.add_trace(go.Sankey(
node = {
"label": ["Health", "Coins"] + [FOOD_LIST[i] for i in DICE_TYPES],
"pad": 15
},
link = {
"source": [0, 1] + list(range(2, len(DICE_TYPES) + 2)),
"target": [2] * len(DICE_TYPES) + [3 + i for i in range(len(DICE_TYPES))],
"value": health_tokens + coin_tokens
},
))
st.plotly_chart(fig)
# Define Streamlit app
st.set_page_config(page_title="Slot Machine Game", page_icon=":game_die:")
st.title("๐ŸŽฒ Slot Machine Game")
# Sidebar
username = st.sidebar.text_input("๐Ÿ‘ค Enter your username:")
num_rolls = st.sidebar.slider("๐Ÿ”ข Choose the number of rolls:", 1, 100, 3)
# Main content
DICE_TYPES = [4, 6, 8, 10, 12, 20, 50, 100]
history = {"health_tokens": [0], "coin_tokens": [0]}
for dice_type in DICE_TYPES:
rolls = roll_dice(num_rolls, dice_type)
highest_rolls = sum(roll == dice_type for roll in rolls)
coin_tokens_added = 0
dice_results = [f"{FOOD_LIST[dice_type]} {roll}" for roll in rolls]
st.write(f"๐ŸŽฐ Results for {dice_type}-sided slot machine: {' | '.join(dice_results)}")
for roll in rolls:
if roll == dice_type:
st.write(f"๐ŸŽ‰ Congratulations! You got the {FOOD_LIST[dice_type]} jackpot! ๐Ÿ’ฐ Adding 3 coins.")
coin_tokens_added += 3
if roll == max(rolls):
st.write(f"๐ŸŽ‰ Congratulations! You got the {FOOD_LIST[dice_type]} maximum value! ๐Ÿ’– Adding 10 health tokens.")
if dice_type == 100:
history["health_tokens"].append(history["health_tokens"][-1] + 10)
history[f"{dice_type}-sided slot machine jackpots"] = highest_rolls
history["roll_history"] = {**history.get("roll_history", {}), dice_type: rolls}
history["coin_tokens"].append(history["coin_tokens"][-1] + coin_tokens_added)
plot_tokens(history["health_tokens"], history["coin_tokens"])
df = pd.concat([pd.DataFrame(history["roll_history"]), pd.DataFrame(history["health_tokens"], columns=["Health Tokens"]), pd.DataFrame(history["coin_tokens"], columns=["Coin Tokens"])], axis=1)
timestamp = datetime.now().strftime("%m-%d-%Y-%H-%M-%S")
filename = f"{username}_{timestamp}.csv"
df.to_csv(filename, index=False)
st.markdown(f'<a href="data:file/csv;base64,{b64encode(open(filename, "rb").read()).decode()}" download="{filename}">Download CSV File</a>', unsafe_allow_html=True)