Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -208,3 +208,111 @@ st.markdown("""
|
|
208 |
""")
|
209 |
|
210 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
""")
|
209 |
|
210 |
|
211 |
+
st.title("AI Development Levels and Capabilities")
|
212 |
+
|
213 |
+
# Create a DataFrame with the information from the image
|
214 |
+
data = {
|
215 |
+
"Level": ["Level 0: No AI", "Level 1: Emerging", "Level 2: Competent", "Level 3: Expert", "Level 4: Virtuoso", "Level 5: Superhuman"],
|
216 |
+
"Description": [
|
217 |
+
"No AI capabilities",
|
218 |
+
"Equal to or somewhat better than an unskilled human",
|
219 |
+
"At least 50th percentile of skilled adults",
|
220 |
+
"At least 90th percentile of skilled adults",
|
221 |
+
"At least 99th percentile of skilled adults",
|
222 |
+
"Outperforms 100% of humans"
|
223 |
+
],
|
224 |
+
"Narrow AI": [
|
225 |
+
"Calculator software, compiler",
|
226 |
+
"GOFAI (Boden, 2014); simple rule-based systems, e.g., SHRDLU (Winograd, 1971)",
|
227 |
+
"Toxicity detectors such as Jigsaw (Das et al., 2022); Smart Speakers such as Siri (Apple), Alexa (Amazon), or Google Assistant (Google); VQA systems such as PaLI (Chen et al., 2023); Watson (IBM); SOTA LLMs for a subset of tasks (e.g., short essay writing, simple coding)",
|
228 |
+
"Spelling & grammar checkers such as Grammarly (Grammarly, 2023); generative image models such as Imagen (Saharia et al., 2022) or Dall-E 2 (Ramesh et al., 2022)",
|
229 |
+
"Deep Blue (Campbell et al., 2002); AlphaGo (Silver et al., 2016, 2017)",
|
230 |
+
"AlphaFold (Jumper et al., 2021; Varadi et al., 2022), AlphaZero (Silver et al., 2018), StockFish (Stockfish, 2023)"
|
231 |
+
],
|
232 |
+
"General AI": [
|
233 |
+
"Human-in-the-loop computing, e.g., Amazon Mechanical Turk",
|
234 |
+
"ChatGPT (OpenAI, 2023), Bard (Anil et al., 2023), Llama 2 (Touvron et al., 2023), Gemini (Pichai & Hassabis, 2023)",
|
235 |
+
"Not yet achieved",
|
236 |
+
"Not yet achieved",
|
237 |
+
"Not yet achieved",
|
238 |
+
"Artificial Superintelligence (ASI) - not yet achieved"
|
239 |
+
],
|
240 |
+
"Narrow AI Achievement": [0, 20, 50, 90, 99, 100],
|
241 |
+
"General AI Achievement": [0, 20, 0, 0, 0, 0]
|
242 |
+
}
|
243 |
+
|
244 |
+
df = pd.DataFrame(data)
|
245 |
+
|
246 |
+
# Display the DataFrame as an interactive table
|
247 |
+
st.dataframe(df, use_container_width=True)
|
248 |
+
|
249 |
+
# Create a line chart to visualize AI achievement levels
|
250 |
+
fig = px.line(df, x="Level", y=["Narrow AI Achievement", "General AI Achievement"],
|
251 |
+
title="AI Achievement Levels",
|
252 |
+
labels={"value": "Achievement Percentage", "variable": "AI Type"},
|
253 |
+
markers=True)
|
254 |
+
st.plotly_chart(fig, use_container_width=True)
|
255 |
+
|
256 |
+
# Add some explanatory text
|
257 |
+
st.markdown("""
|
258 |
+
This dashboard summarizes and visualizes the levels of AI development, from no AI capabilities (Level 0) to superhuman AI (Level 5).
|
259 |
+
It categorizes AI into Narrow AI (designed for specific tasks) and General AI (capable of a wide range of tasks).
|
260 |
+
|
261 |
+
Key points:
|
262 |
+
- As of 2023, most advanced AI systems are at Level 1 or 2 for General AI tasks.
|
263 |
+
- Narrow AI has achieved higher levels in specific domains (e.g., AlphaFold for protein folding).
|
264 |
+
- General AI at Level 2 (Competent) and above has not yet been achieved.
|
265 |
+
- The development of Artificial Superintelligence (ASI) remains a theoretical concept.
|
266 |
+
|
267 |
+
Note: The achievement levels in the chart are approximate and for illustration purposes.
|
268 |
+
""")
|
269 |
+
|
270 |
+
# Add a section for user interaction
|
271 |
+
st.subheader("Explore AI Levels")
|
272 |
+
selected_level = st.selectbox("Select an AI Level to learn more:", df['Level'])
|
273 |
+
|
274 |
+
# Display details for the selected level
|
275 |
+
if selected_level:
|
276 |
+
level_data = df[df['Level'] == selected_level].iloc[0]
|
277 |
+
st.write(f"**Description:** {level_data['Description']}")
|
278 |
+
st.write(f"**Narrow AI Examples:** {level_data['Narrow AI']}")
|
279 |
+
st.write(f"**General AI Status:** {level_data['General AI']}")
|
280 |
+
|
281 |
+
# Add a comparison tool
|
282 |
+
st.subheader("Compare AI Levels")
|
283 |
+
col1, col2 = st.columns(2)
|
284 |
+
with col1:
|
285 |
+
level1 = st.selectbox("Select first level:", df['Level'], key="level1")
|
286 |
+
with col2:
|
287 |
+
level2 = st.selectbox("Select second level:", df['Level'], key="level2")
|
288 |
+
|
289 |
+
if level1 and level2:
|
290 |
+
data1 = df[df['Level'] == level1].iloc[0]
|
291 |
+
data2 = df[df['Level'] == level2].iloc[0]
|
292 |
+
|
293 |
+
comparison_df = pd.DataFrame({
|
294 |
+
"Aspect": ["Description", "Narrow AI Examples", "General AI Status", "Narrow AI Achievement", "General AI Achievement"],
|
295 |
+
level1: [data1['Description'], data1['Narrow AI'], data1['General AI'], f"{data1['Narrow AI Achievement']}%", f"{data1['General AI Achievement']}%"],
|
296 |
+
level2: [data2['Description'], data2['Narrow AI'], data2['General AI'], f"{data2['Narrow AI Achievement']}%", f"{data2['General AI Achievement']}%"]
|
297 |
+
})
|
298 |
+
|
299 |
+
st.table(comparison_df)
|
300 |
+
|
301 |
+
# Add a section for future predictions
|
302 |
+
st.subheader("Future of AI")
|
303 |
+
st.write("""
|
304 |
+
Based on the current trajectory of AI development:
|
305 |
+
|
306 |
+
1. **Narrow AI:** We can expect continued rapid progress in specific domains, with more tasks reaching expert and virtuoso levels.
|
307 |
+
2. **General AI:** Progress towards Competent AGI (Level 2) is ongoing, but the timeline remains uncertain.
|
308 |
+
3. **Ethical Considerations:** As AI capabilities expand, ethical guidelines and responsible development practices become increasingly crucial.
|
309 |
+
4. **Interdisciplinary Approach:** Future advancements will likely require collaboration across multiple fields, including computer science, neuroscience, and philosophy.
|
310 |
+
|
311 |
+
What are your thoughts on the future of AI? How might these advancements impact various industries and society as a whole?
|
312 |
+
""")
|
313 |
+
|
314 |
+
# Add a user input section for predictions
|
315 |
+
user_prediction = st.text_area("Share your predictions or thoughts on the future of AI:")
|
316 |
+
if st.button("Submit Your Prediction"):
|
317 |
+
st.write("Thank you for sharing your thoughts! While we can't store your prediction, it's valuable to consider diverse perspectives on AI's future.")
|
318 |
+
|