import os import gradio as gr import torch import PIL from transformers import AutoProcessor, AutoModelForCausalLM # Using AutoModel classes EXAMPLES_DIR = 'examples' DEFAULT_PROMPT = "" device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Load model using AutoModel with trust_remote_code=True model = AutoModelForCausalLM.from_pretrained('dhansmair/flamingo-mini', trust_remote_code=True) model.to(device) model.eval() # Initialize processor without the `device` argument processor = AutoProcessor.from_pretrained('dhansmair/flamingo-mini') # Setup some example images examples = [] if os.path.isdir(EXAMPLES_DIR): for file in os.listdir(EXAMPLES_DIR): path = EXAMPLES_DIR + "/" + file examples.append([path, DEFAULT_PROMPT]) def predict_caption(image, prompt): assert isinstance(prompt, str) # Process the image using the model caption = model.generate( processor(images=image, prompt=prompt), # Pass processed inputs to the model max_length=50 ) if isinstance(caption, list): caption = caption[0] return caption iface = gr.Interface( fn=predict_caption, inputs=[gr.Image(type="pil"), gr.Textbox(value=DEFAULT_PROMPT, label="Prompt")], examples=examples, outputs="text" ) iface.launch(debug=True)