awacke1's picture
Update app.py
cba0c32
raw
history blame
3.64 kB
import os
import asyncio
from concurrent.futures import ThreadPoolExecutor
import requests
import gradio as gr
MAX_NEW_TOKENS = 256
TOKEN = os.environ.get("HF_TOKEN", None)
URLS = [
"https://api-inference.huggingface.co/models/google/flan-ul2",
"https://api-inference.huggingface.co/models/google/flan-t5-xxl",
]
def fetch(session, text, api_url):
model = api_url.split("/")[-1]
response = session.post(api_url, json={"inputs": text, "parameters": {"max_new_tokens": MAX_NEW_TOKENS}})
if response.status_code != 200:
return model, None
return model, response.json()
async def inference(text):
with ThreadPoolExecutor(max_workers=2) as executor:
with requests.Session() as session:
session.headers = {"Authorization": f"Bearer {TOKEN}"}
# Initialize the event loop
loop = asyncio.get_event_loop()
tasks = [
loop.run_in_executor(
executor, fetch, *(session, text, url) # Allows us to pass in multiple arguments to `fetch`
)
for url in URLS
]
# Initializes the tasks to run and awaits their results
responses = [None, None]
for (model, response) in await asyncio.gather(*tasks):
if response is not None:
if model == "flan-ul2":
responses[0] = response[0]["generated_text"]
elif model == "flan-t5-xxl":
responses[1] = response[0]["generated_text"]
return responses
def feedback(inputs, feedback, is_positive):
with open('promptlog.txt', 'a') as f:
f.write(f"Inputs: {inputs}\nFeedback: {feedback}\nIs positive: {is_positive}\n\n")
def display_history():
try:
with open('promptlog.txt', 'r') as f:
history = f.read()
except FileNotFoundError:
history = "No history yet."
print(history)
def app():
title = "Flan UL2 vs Flan T5 XXL"
description = "Compare with feedback: [Flan-T5-xxl](https://huggingface.co/google/flan-t5-xxl) and [Flan-UL2](https://huggingface.co/google/flan-ul2)."
inputs = gr.inputs.Textbox(lines=3, label="Input Prompt")
outputs = [gr.outputs.Textbox(lines=3, label="Flan T5-UL2"), gr.outputs.Textbox(lines=3, label="Flan T5-XXL")]
feedback_box = gr.inputs.CheckboxGroup(["Positive feedback", "Negative feedback"], label="Feedback")
feedback_text = gr.inputs.Textbox(label="Feedback Reason")
feedback_button = gr.inputs.Button(label="Submit Feedback")
display_history_button = gr.inputs.Button(label="Display Feedback History")
def predict_text(inputs):
return inference(inputs)
def handle_feedback(inputs, feedback, is_positive):
feedback(inputs, feedback, is_positive)
return "Thank you for your feedback!"
def handle_display_history():
display_history()
gr.Interface(fn=predict_text, inputs=inputs, outputs=outputs, title=title, description=description).launch()
feedback_ui = gr.Interface(fn=handle_feedback, inputs=[inputs, feedback_box, feedback_text, feedback_button], outputs=gr.outputs.Textbox(label="Feedback Submitted"), title="Feedback", description="Please provide feedback on the model's response.")
display_history_ui = gr.Interface(fn=handle_display_history, inputs=display_history_button, outputs=gr.outputs.Textbox(label="Feedback History"), title="Feedback History", description="View history of feedback submissions.")
gr.Interface([feedback_ui, display_history_ui], columns=2, title="Flan Feedback").launch()
if name == 'main':
app()