Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import asyncio
|
3 |
+
from concurrent.futures import ThreadPoolExecutor
|
4 |
+
import requests
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
MAX_NEW_TOKENS = 256
|
8 |
+
TOKEN = os.environ.get("HF_TOKEN", None)
|
9 |
+
URLS = [
|
10 |
+
"https://api-inference.huggingface.co/models/google/flan-ul2",
|
11 |
+
"https://api-inference.huggingface.co/models/google/flan-t5-xxl",
|
12 |
+
]
|
13 |
+
|
14 |
+
def fetch(session, text, api_url):
|
15 |
+
model = api_url.split("/")[-1]
|
16 |
+
response = session.post(api_url, json={"inputs": text, "parameters": {"max_new_tokens": MAX_NEW_TOKENS}})
|
17 |
+
if response.status_code != 200:
|
18 |
+
return model, None
|
19 |
+
return model, response.json()
|
20 |
+
|
21 |
+
async def inference(text):
|
22 |
+
with ThreadPoolExecutor(max_workers=2) as executor:
|
23 |
+
with requests.Session() as session:
|
24 |
+
session.headers = {"Authorization": f"Bearer {TOKEN}"}
|
25 |
+
# Initialize the event loop
|
26 |
+
loop = asyncio.get_event_loop()
|
27 |
+
tasks = [
|
28 |
+
loop.run_in_executor(
|
29 |
+
executor, fetch, *(session, text, url) # Allows us to pass in multiple arguments to `fetch`
|
30 |
+
)
|
31 |
+
for url in URLS
|
32 |
+
]
|
33 |
+
|
34 |
+
# Initializes the tasks to run and awaits their results
|
35 |
+
responses = [None, None]
|
36 |
+
for (model, response) in await asyncio.gather(*tasks):
|
37 |
+
if response is not None:
|
38 |
+
if model == "flan-ul2":
|
39 |
+
responses[0] = response[0]["generated_text"]
|
40 |
+
elif model == "flan-t5-xxl":
|
41 |
+
responses[1] = response[0]["generated_text"]
|
42 |
+
return responses
|
43 |
+
|
44 |
+
def feedback(inputs, feedback, is_positive):
|
45 |
+
with open('promptlog.txt', 'a') as f:
|
46 |
+
f.write(f"Inputs: {inputs}\nFeedback: {feedback}\nIs positive: {is_positive}\n\n")
|
47 |
+
|
48 |
+
def display_history():
|
49 |
+
try:
|
50 |
+
with open('promptlog.txt', 'r') as f:
|
51 |
+
history = f.read()
|
52 |
+
except FileNotFoundError:
|
53 |
+
history = "No history yet."
|
54 |
+
print(history)
|
55 |
+
|
56 |
+
def app():
|
57 |
+
title = "Flan UL2 vs Flan T5 XXL"
|
58 |
+
description = "Compare with feedback: [Flan-T5-xxl](https://huggingface.co/google/flan-t5-xxl) and [Flan-UL2](https://huggingface.co/google/flan-ul2)."
|
59 |
+
inputs = gr.inputs.Textbox(lines=3, label="Input Prompt")
|
60 |
+
outputs = [gr.outputs.Textbox(lines=3, label="Flan T5-UL2"), gr.outputs.Textbox(lines=3, label="Flan T5-XXL")]
|
61 |
+
feedback_box = gr.inputs.CheckboxGroup(["Positive feedback", "Negative feedback"], label="Feedback")
|
62 |
+
feedback_text = gr.inputs.Textbox(label="Feedback Reason")
|
63 |
+
feedback_button = gr.inputs.Button(label="Submit Feedback")
|
64 |
+
display_history_button = gr.inputs.Button(label="Display Feedback History")
|
65 |
+
|
66 |
+
def predict_text(inputs):
|
67 |
+
return inference(inputs)
|
68 |
+
|
69 |
+
def handle_feedback(inputs, feedback, is_positive):
|
70 |
+
feedback(inputs, feedback, is_positive)
|
71 |
+
return "Thank you for your feedback!"
|
72 |
+
|
73 |
+
def handle_display_history():
|
74 |
+
display_history()
|
75 |
+
|
76 |
+
gr.Interface(fn=predict_text, inputs=inputs, outputs=outputs, title=title, description=description).launch()
|
77 |
+
|
78 |
+
feedback_ui = gr.Interface(fn=handle_feedback, inputs=[inputs, feedback_box, feedback_text, feedback_button], outputs=gr.outputs
|