Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -10,3 +10,54 @@ urls = {
|
|
10 |
|
11 |
for name, url in urls.items():
|
12 |
st.write(f"- [{name}]({url})")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
for name, url in urls.items():
|
12 |
st.write(f"- [{name}]({url})")
|
13 |
+
|
14 |
+
|
15 |
+
import streamlit as st
|
16 |
+
import tensorflow as tf
|
17 |
+
from tensorflow.keras.preprocessing import image
|
18 |
+
import numpy as np
|
19 |
+
import pycuda.autoinit
|
20 |
+
import pycuda.driver as cuda
|
21 |
+
import tensorrt as trt
|
22 |
+
import nvtabular as nvt
|
23 |
+
import nvidia.dali as dali
|
24 |
+
import nvidia.dali.ops as ops
|
25 |
+
import nvidia.dali.types as types
|
26 |
+
import deepstream as ds
|
27 |
+
|
28 |
+
# Set up the Streamlit app
|
29 |
+
st.set_page_config(page_title="Deep Learning Libraries Demo")
|
30 |
+
|
31 |
+
# NVIDIA cuDNN
|
32 |
+
st.header("NVIDIA cuDNN")
|
33 |
+
st.write("cuDNN is a GPU-accelerated library of primitives for deep neural networks.")
|
34 |
+
|
35 |
+
# NVIDIA TensorRT
|
36 |
+
st.header("NVIDIA TensorRT")
|
37 |
+
st.write("TensorRT is a high-performance deep learning inference optimizer and runtime for production deployment.")
|
38 |
+
|
39 |
+
# NVIDIA Riva
|
40 |
+
st.header("NVIDIA Riva")
|
41 |
+
st.write("Riva is a platform for developing engaging and contextual AI-powered conversation apps.")
|
42 |
+
|
43 |
+
# NVIDIA DeepStream SDK
|
44 |
+
st.header("NVIDIA DeepStream SDK")
|
45 |
+
st.write("DeepStream is a real-time streaming analytics toolkit for AI-based video understanding and multi-sensor processing.")
|
46 |
+
|
47 |
+
# NVIDIA DALI
|
48 |
+
st.header("NVIDIA DALI")
|
49 |
+
st.write("DALI is a portable, open-source library for decoding and augmenting images and videos to accelerate deep learning applications.")
|
50 |
+
|
51 |
+
# Load an image and run it through a pre-trained model
|
52 |
+
st.header("Example: Image Classification with TensorFlow")
|
53 |
+
model = tf.keras.applications.MobileNetV2()
|
54 |
+
img_path = "example.jpg"
|
55 |
+
img = image.load_img(img_path, target_size=(224, 224))
|
56 |
+
x = image.img_to_array(img)
|
57 |
+
x = np.expand_dims(x, axis=0)
|
58 |
+
x = tf.keras.applications.mobilenet_v2.preprocess_input(x)
|
59 |
+
preds = model.predict(x)
|
60 |
+
st.write(f"Predicted class: {tf.keras.applications.mobilenet_v2.decode_predictions(preds, top=1)[0][0][1]}")
|
61 |
+
|
62 |
+
# Clean up
|
63 |
+
del model, img, x, preds
|