awacke1 commited on
Commit
90710f8
·
1 Parent(s): 160c87a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -0
app.py CHANGED
@@ -10,3 +10,54 @@ urls = {
10
 
11
  for name, url in urls.items():
12
  st.write(f"- [{name}]({url})")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
  for name, url in urls.items():
12
  st.write(f"- [{name}]({url})")
13
+
14
+
15
+ import streamlit as st
16
+ import tensorflow as tf
17
+ from tensorflow.keras.preprocessing import image
18
+ import numpy as np
19
+ import pycuda.autoinit
20
+ import pycuda.driver as cuda
21
+ import tensorrt as trt
22
+ import nvtabular as nvt
23
+ import nvidia.dali as dali
24
+ import nvidia.dali.ops as ops
25
+ import nvidia.dali.types as types
26
+ import deepstream as ds
27
+
28
+ # Set up the Streamlit app
29
+ st.set_page_config(page_title="Deep Learning Libraries Demo")
30
+
31
+ # NVIDIA cuDNN
32
+ st.header("NVIDIA cuDNN")
33
+ st.write("cuDNN is a GPU-accelerated library of primitives for deep neural networks.")
34
+
35
+ # NVIDIA TensorRT
36
+ st.header("NVIDIA TensorRT")
37
+ st.write("TensorRT is a high-performance deep learning inference optimizer and runtime for production deployment.")
38
+
39
+ # NVIDIA Riva
40
+ st.header("NVIDIA Riva")
41
+ st.write("Riva is a platform for developing engaging and contextual AI-powered conversation apps.")
42
+
43
+ # NVIDIA DeepStream SDK
44
+ st.header("NVIDIA DeepStream SDK")
45
+ st.write("DeepStream is a real-time streaming analytics toolkit for AI-based video understanding and multi-sensor processing.")
46
+
47
+ # NVIDIA DALI
48
+ st.header("NVIDIA DALI")
49
+ st.write("DALI is a portable, open-source library for decoding and augmenting images and videos to accelerate deep learning applications.")
50
+
51
+ # Load an image and run it through a pre-trained model
52
+ st.header("Example: Image Classification with TensorFlow")
53
+ model = tf.keras.applications.MobileNetV2()
54
+ img_path = "example.jpg"
55
+ img = image.load_img(img_path, target_size=(224, 224))
56
+ x = image.img_to_array(img)
57
+ x = np.expand_dims(x, axis=0)
58
+ x = tf.keras.applications.mobilenet_v2.preprocess_input(x)
59
+ preds = model.predict(x)
60
+ st.write(f"Predicted class: {tf.keras.applications.mobilenet_v2.decode_predictions(preds, top=1)[0][0][1]}")
61
+
62
+ # Clean up
63
+ del model, img, x, preds