import streamlit as st st.write("# URLs for GPU RTX Nvidia 3070 Nsight pages") urls = { "GPUs Ampere architecture" : "https://en.wikipedia.org/wiki/GeForce_30_series", "Ray Tracing Interactive": "https://en.wikipedia.org/wiki/Ray_tracing_(graphics)#Interactive_ray_tracing", "GeForce RTX 30 Series": "https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/", } for name, url in urls.items(): st.write(f"- [{name}]({url})") import streamlit as st import tensorflow as tf from tensorflow.keras.preprocessing import image import numpy as np import pycuda.autoinit import pycuda.driver as cuda import tensorrt as trt import nvtabular as nvt import nvidia.dali as dali import nvidia.dali.ops as ops import nvidia.dali.types as types import deepstream as ds # Set up the Streamlit app st.set_page_config(page_title="Deep Learning Libraries Demo") # NVIDIA cuDNN st.header("NVIDIA cuDNN") st.write("cuDNN is a GPU-accelerated library of primitives for deep neural networks.") # NVIDIA TensorRT st.header("NVIDIA TensorRT") st.write("TensorRT is a high-performance deep learning inference optimizer and runtime for production deployment.") # NVIDIA Riva st.header("NVIDIA Riva") st.write("Riva is a platform for developing engaging and contextual AI-powered conversation apps.") # NVIDIA DeepStream SDK st.header("NVIDIA DeepStream SDK") st.write("DeepStream is a real-time streaming analytics toolkit for AI-based video understanding and multi-sensor processing.") # NVIDIA DALI st.header("NVIDIA DALI") st.write("DALI is a portable, open-source library for decoding and augmenting images and videos to accelerate deep learning applications.") # Load an image and run it through a pre-trained model st.header("Example: Image Classification with TensorFlow") model = tf.keras.applications.MobileNetV2() img_path = "example.jpg" img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = tf.keras.applications.mobilenet_v2.preprocess_input(x) preds = model.predict(x) st.write(f"Predicted class: {tf.keras.applications.mobilenet_v2.decode_predictions(preds, top=1)[0][0][1]}") # Clean up del model, img, x, preds