Spaces:
Running
Running
Update index.html
Browse files- index.html +1738 -19
index.html
CHANGED
@@ -1,19 +1,1738 @@
|
|
1 |
-
<!
|
2 |
-
<html>
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>Enhanced AI Flocking Evolution Simulator</title>
|
7 |
+
<style>
|
8 |
+
body {
|
9 |
+
margin: 0;
|
10 |
+
overflow: hidden;
|
11 |
+
font-family: Arial, sans-serif;
|
12 |
+
background: #000;
|
13 |
+
}
|
14 |
+
#ui {
|
15 |
+
position: absolute;
|
16 |
+
top: 10px;
|
17 |
+
left: 10px;
|
18 |
+
color: white;
|
19 |
+
background-color: rgba(0,0,0,0.9);
|
20 |
+
padding: 15px;
|
21 |
+
border-radius: 8px;
|
22 |
+
z-index: 100;
|
23 |
+
font-size: 14px;
|
24 |
+
min-width: 200px;
|
25 |
+
}
|
26 |
+
#controls {
|
27 |
+
position: absolute;
|
28 |
+
top: 10px;
|
29 |
+
right: 10px;
|
30 |
+
color: white;
|
31 |
+
background-color: rgba(0,0,0,0.9);
|
32 |
+
padding: 15px;
|
33 |
+
border-radius: 8px;
|
34 |
+
z-index: 100;
|
35 |
+
}
|
36 |
+
button {
|
37 |
+
background-color: #4CAF50;
|
38 |
+
border: none;
|
39 |
+
color: white;
|
40 |
+
padding: 8px 16px;
|
41 |
+
margin: 5px;
|
42 |
+
cursor: pointer;
|
43 |
+
border-radius: 4px;
|
44 |
+
font-size: 12px;
|
45 |
+
}
|
46 |
+
button:hover {
|
47 |
+
background-color: #45a049;
|
48 |
+
}
|
49 |
+
#stats {
|
50 |
+
position: absolute;
|
51 |
+
bottom: 10px;
|
52 |
+
left: 10px;
|
53 |
+
color: white;
|
54 |
+
background-color: rgba(0,0,0,0.9);
|
55 |
+
padding: 15px;
|
56 |
+
border-radius: 8px;
|
57 |
+
z-index: 100;
|
58 |
+
font-size: 12px;
|
59 |
+
min-width: 200px;
|
60 |
+
}
|
61 |
+
#flockingStats {
|
62 |
+
position: absolute;
|
63 |
+
bottom: 10px;
|
64 |
+
right: 10px;
|
65 |
+
color: white;
|
66 |
+
background-color: rgba(0,0,0,0.9);
|
67 |
+
padding: 15px;
|
68 |
+
border-radius: 8px;
|
69 |
+
z-index: 100;
|
70 |
+
font-size: 12px;
|
71 |
+
min-width: 180px;
|
72 |
+
}
|
73 |
+
#aiStats {
|
74 |
+
position: absolute;
|
75 |
+
top: 50%;
|
76 |
+
right: 10px;
|
77 |
+
transform: translateY(-50%);
|
78 |
+
color: white;
|
79 |
+
background-color: rgba(0,0,0,0.9);
|
80 |
+
padding: 15px;
|
81 |
+
border-radius: 8px;
|
82 |
+
z-index: 100;
|
83 |
+
font-size: 12px;
|
84 |
+
min-width: 180px;
|
85 |
+
}
|
86 |
+
.highlight { color: #ffcc00; font-weight: bold; }
|
87 |
+
.success { color: #00ff00; font-weight: bold; }
|
88 |
+
.flocking { color: #00aaff; }
|
89 |
+
.solo { color: #ff8800; }
|
90 |
+
.leader { color: #ff00ff; font-weight: bold; }
|
91 |
+
.explorer { color: #00ffff; }
|
92 |
+
.follower { color: #88ff88; }
|
93 |
+
.species-0 { color: #ff6b6b; }
|
94 |
+
.species-1 { color: #4ecdc4; }
|
95 |
+
.species-2 { color: #45b7d1; }
|
96 |
+
.species-3 { color: #96ceb4; }
|
97 |
+
.species-4 { color: #ffd93d; }
|
98 |
+
.progress-bar {
|
99 |
+
width: 100%;
|
100 |
+
height: 10px;
|
101 |
+
background-color: #333;
|
102 |
+
border-radius: 5px;
|
103 |
+
overflow: hidden;
|
104 |
+
margin: 5px 0;
|
105 |
+
}
|
106 |
+
.progress-fill {
|
107 |
+
height: 100%;
|
108 |
+
background: linear-gradient(90deg, #ff6b6b, #4ecdc4, #45b7d1);
|
109 |
+
transition: width 0.3s ease;
|
110 |
+
}
|
111 |
+
</style>
|
112 |
+
</head>
|
113 |
+
<body>
|
114 |
+
<div id="ui">
|
115 |
+
<div class="highlight">Enhanced AI Evolution Simulator</div>
|
116 |
+
<div>Epoch: <span id="epoch">1</span></div>
|
117 |
+
<div>Time: <span id="epochTime">60</span>s</div>
|
118 |
+
<div class="progress-bar"><div class="progress-fill" id="timeProgress"></div></div>
|
119 |
+
<div>Population: <span id="population">100</span></div>
|
120 |
+
<div>Species: <span id="speciesCount">1</span></div>
|
121 |
+
<div>Best Fitness: <span id="bestFitness">0</span></div>
|
122 |
+
<div>Avg IQ: <span id="avgIQ">50</span></div>
|
123 |
+
<div>Innovation: <span id="innovationCount">0</span></div>
|
124 |
+
</div>
|
125 |
+
|
126 |
+
<div id="controls">
|
127 |
+
<button id="pauseBtn">Pause</button>
|
128 |
+
<button id="resetBtn">Reset</button>
|
129 |
+
<button id="speedBtn">Speed: 1x</button>
|
130 |
+
<button id="viewBtn">View: Follow</button>
|
131 |
+
<button id="flockBtn">Flocks: ON</button>
|
132 |
+
<button id="adaptiveBtn">Adaptive: ON</button>
|
133 |
+
<button id="challengeBtn">Challenge: Normal</button>
|
134 |
+
</div>
|
135 |
+
|
136 |
+
<div id="stats">
|
137 |
+
<div><span class="highlight">Top Performers:</span></div>
|
138 |
+
<div id="topPerformers"></div>
|
139 |
+
<div style="margin-top: 10px;"><span class="highlight">Generation Stats:</span></div>
|
140 |
+
<div>Crashes: <span id="crashCount">0</span></div>
|
141 |
+
<div>Total Distance: <span id="totalDistance">0</span></div>
|
142 |
+
<div>Exploration: <span id="explorationBonus">0</span></div>
|
143 |
+
<div>Cooperation: <span id="cooperationScore">0</span></div>
|
144 |
+
<div>Road Mastery: <span id="roadMastery">0</span>%</div>
|
145 |
+
</div>
|
146 |
+
|
147 |
+
<div id="flockingStats">
|
148 |
+
<div><span class="highlight">Flocking Dynamics:</span></div>
|
149 |
+
<div><span class="leader">Leaders:</span> <span id="leaderCount">0</span></div>
|
150 |
+
<div><span class="flocking">Followers:</span> <span id="followerCount">0</span></div>
|
151 |
+
<div><span class="explorer">Explorers:</span> <span id="explorerCount">0</span></div>
|
152 |
+
<div><span class="solo">Solo:</span> <span id="soloCount">0</span></div>
|
153 |
+
<div>Largest Flock: <span id="largestFlock">0</span></div>
|
154 |
+
<div>Avg Coordination: <span id="avgCoordination">0</span>%</div>
|
155 |
+
<div>Group Efficiency: <span id="groupEfficiency">0</span>%</div>
|
156 |
+
</div>
|
157 |
+
|
158 |
+
<div id="aiStats">
|
159 |
+
<div><span class="highlight">AI Intelligence:</span></div>
|
160 |
+
<div>Neural Complexity: <span id="neuralComplexity">100</span></div>
|
161 |
+
<div>Decision Quality: <span id="decisionQuality">50</span>%</div>
|
162 |
+
<div>Learning Rate: <span id="learningRate">1.0</span></div>
|
163 |
+
<div>Memory Usage: <span id="memoryUsage">0</span>%</div>
|
164 |
+
<div style="margin-top: 10px;"><span class="highlight">Behaviors:</span></div>
|
165 |
+
<div>Predictive: <span id="predictiveBehavior">0</span>%</div>
|
166 |
+
<div>Adaptive: <span id="adaptiveBehavior">0</span>%</div>
|
167 |
+
<div>Emergent: <span id="emergentBehavior">0</span>%</div>
|
168 |
+
</div>
|
169 |
+
|
170 |
+
<script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/r128/three.min.js"></script>
|
171 |
+
<script>
|
172 |
+
// Global variables
|
173 |
+
let scene, camera, renderer, clock;
|
174 |
+
let world = {
|
175 |
+
roads: [],
|
176 |
+
intersections: [],
|
177 |
+
buildings: [],
|
178 |
+
jumpRamps: [],
|
179 |
+
flockLines: [],
|
180 |
+
dynamicObstacles: [],
|
181 |
+
targets: []
|
182 |
+
};
|
183 |
+
|
184 |
+
// Enhanced evolution system
|
185 |
+
let epoch = 1;
|
186 |
+
let epochTime = 60;
|
187 |
+
let timeLeft = 60;
|
188 |
+
let population = [];
|
189 |
+
let species = [];
|
190 |
+
let populationSize = 100;
|
191 |
+
let bestFitness = 0;
|
192 |
+
let totalDistance = 0;
|
193 |
+
let groupDistance = 0;
|
194 |
+
let crashCount = 0;
|
195 |
+
let paused = false;
|
196 |
+
let speedMultiplier = 1;
|
197 |
+
let cameraMode = 'follow';
|
198 |
+
let showFlockLines = true;
|
199 |
+
let adaptiveEnvironment = true;
|
200 |
+
let challengeLevel = 'normal'; // normal, hard, extreme
|
201 |
+
let innovationCounter = 0;
|
202 |
+
let globalMemory = new Map();
|
203 |
+
|
204 |
+
// Enhanced AI parameters
|
205 |
+
const NEIGHBOR_RADIUS = 30;
|
206 |
+
const SEPARATION_RADIUS = 10;
|
207 |
+
const LEADERSHIP_RADIUS = 40;
|
208 |
+
const MEMORY_SIZE = 10;
|
209 |
+
const SPECIES_THRESHOLD = 3.0;
|
210 |
+
const TARGET_SPECIES = 5;
|
211 |
+
|
212 |
+
// Dynamic challenge system
|
213 |
+
let dynamicChallenges = {
|
214 |
+
obstacles: [],
|
215 |
+
targets: [],
|
216 |
+
weather: 'clear',
|
217 |
+
timeOfDay: 'day'
|
218 |
+
};
|
219 |
+
|
220 |
+
// Enhanced Neural Network with memory and multiple layers
|
221 |
+
class EnhancedNeuralNetwork {
|
222 |
+
constructor() {
|
223 |
+
this.inputSize = 24; // Expanded sensory inputs
|
224 |
+
this.hiddenLayers = [32, 24, 16]; // Multi-layer deep network
|
225 |
+
this.outputSize = 8; // More nuanced outputs
|
226 |
+
this.memorySize = MEMORY_SIZE;
|
227 |
+
|
228 |
+
// Initialize all weight matrices and biases
|
229 |
+
this.weights = [];
|
230 |
+
this.biases = [];
|
231 |
+
this.memory = new Array(this.memorySize).fill(0);
|
232 |
+
this.memoryPointer = 0;
|
233 |
+
|
234 |
+
// Build network layers
|
235 |
+
let prevSize = this.inputSize + this.memorySize;
|
236 |
+
for (let i = 0; i < this.hiddenLayers.length; i++) {
|
237 |
+
this.weights.push(this.randomMatrix(prevSize, this.hiddenLayers[i]));
|
238 |
+
this.biases.push(this.randomArray(this.hiddenLayers[i]));
|
239 |
+
prevSize = this.hiddenLayers[i];
|
240 |
+
}
|
241 |
+
|
242 |
+
// Output layer
|
243 |
+
this.weights.push(this.randomMatrix(prevSize, this.outputSize));
|
244 |
+
this.biases.push(this.randomArray(this.outputSize));
|
245 |
+
|
246 |
+
// Specialized modules
|
247 |
+
this.attentionWeights = this.randomArray(this.inputSize);
|
248 |
+
this.innovationGenes = this.randomArray(10);
|
249 |
+
this.personalityTraits = {
|
250 |
+
leadership: Math.random(),
|
251 |
+
exploration: Math.random(),
|
252 |
+
cooperation: Math.random(),
|
253 |
+
caution: Math.random(),
|
254 |
+
adaptability: Math.random()
|
255 |
+
};
|
256 |
+
}
|
257 |
+
|
258 |
+
randomMatrix(rows, cols) {
|
259 |
+
let matrix = [];
|
260 |
+
for (let i = 0; i < rows; i++) {
|
261 |
+
matrix[i] = [];
|
262 |
+
for (let j = 0; j < cols; j++) {
|
263 |
+
matrix[i][j] = (Math.random() - 0.5) * 2;
|
264 |
+
}
|
265 |
+
}
|
266 |
+
return matrix;
|
267 |
+
}
|
268 |
+
|
269 |
+
randomArray(size) {
|
270 |
+
return Array(size).fill().map(() => (Math.random() - 0.5) * 2);
|
271 |
+
}
|
272 |
+
|
273 |
+
// Advanced activation with attention mechanism
|
274 |
+
activate(inputs) {
|
275 |
+
// Apply attention mechanism to inputs
|
276 |
+
const attentionScores = inputs.map((input, i) =>
|
277 |
+
input * this.sigmoid(this.attentionWeights[i])
|
278 |
+
);
|
279 |
+
|
280 |
+
// Combine inputs with memory
|
281 |
+
let currentInput = [...attentionScores, ...this.memory];
|
282 |
+
|
283 |
+
// Forward pass through hidden layers
|
284 |
+
for (let layer = 0; layer < this.hiddenLayers.length; layer++) {
|
285 |
+
currentInput = this.forwardLayer(currentInput, this.weights[layer], this.biases[layer]);
|
286 |
+
}
|
287 |
+
|
288 |
+
// Output layer
|
289 |
+
const outputs = this.forwardLayer(currentInput,
|
290 |
+
this.weights[this.weights.length - 1],
|
291 |
+
this.biases[this.biases.length - 1]);
|
292 |
+
|
293 |
+
// Update memory with current state
|
294 |
+
this.updateMemory(inputs, outputs);
|
295 |
+
|
296 |
+
return outputs;
|
297 |
+
}
|
298 |
+
|
299 |
+
forwardLayer(inputs, weights, biases) {
|
300 |
+
const outputs = new Array(weights[0].length).fill(0);
|
301 |
+
|
302 |
+
for (let i = 0; i < outputs.length; i++) {
|
303 |
+
for (let j = 0; j < inputs.length; j++) {
|
304 |
+
outputs[i] += inputs[j] * weights[j][i];
|
305 |
+
}
|
306 |
+
outputs[i] += biases[i];
|
307 |
+
outputs[i] = this.advancedActivation(outputs[i]);
|
308 |
+
}
|
309 |
+
|
310 |
+
return outputs;
|
311 |
+
}
|
312 |
+
|
313 |
+
// Advanced activation function combining sigmoid and tanh
|
314 |
+
advancedActivation(x) {
|
315 |
+
const clampedX = Math.max(-10, Math.min(10, x));
|
316 |
+
return (this.sigmoid(clampedX) + Math.tanh(clampedX)) / 2;
|
317 |
+
}
|
318 |
+
|
319 |
+
sigmoid(x) {
|
320 |
+
return 1 / (1 + Math.exp(-Math.max(-500, Math.min(500, x))));
|
321 |
+
}
|
322 |
+
|
323 |
+
updateMemory(inputs, outputs) {
|
324 |
+
// Store important environmental information
|
325 |
+
const importance = Math.max(...inputs.slice(0, 8)); // Obstacle sensor max
|
326 |
+
this.memory[this.memoryPointer] = importance;
|
327 |
+
this.memoryPointer = (this.memoryPointer + 1) % this.memorySize;
|
328 |
+
}
|
329 |
+
|
330 |
+
// Advanced mutation with adaptive rates
|
331 |
+
mutate(baseRate = 0.1, innovation = false) {
|
332 |
+
const adaptiveRate = baseRate * (1 + this.personalityTraits.adaptability);
|
333 |
+
|
334 |
+
// Mutate weights
|
335 |
+
this.weights.forEach(weightMatrix => {
|
336 |
+
this.mutateMatrix(weightMatrix, adaptiveRate);
|
337 |
+
});
|
338 |
+
|
339 |
+
// Mutate biases
|
340 |
+
this.biases.forEach(biasArray => {
|
341 |
+
this.mutateArray(biasArray, adaptiveRate);
|
342 |
+
});
|
343 |
+
|
344 |
+
// Mutate attention weights
|
345 |
+
this.mutateArray(this.attentionWeights, adaptiveRate * 0.5);
|
346 |
+
|
347 |
+
// Mutate personality traits
|
348 |
+
Object.keys(this.personalityTraits).forEach(trait => {
|
349 |
+
if (Math.random() < adaptiveRate) {
|
350 |
+
this.personalityTraits[trait] += (Math.random() - 0.5) * 0.2;
|
351 |
+
this.personalityTraits[trait] = Math.max(0, Math.min(1, this.personalityTraits[trait]));
|
352 |
+
}
|
353 |
+
});
|
354 |
+
|
355 |
+
// Innovation mutations
|
356 |
+
if (innovation) {
|
357 |
+
this.mutateArray(this.innovationGenes, adaptiveRate * 2);
|
358 |
+
innovationCounter++;
|
359 |
+
}
|
360 |
+
}
|
361 |
+
|
362 |
+
mutateMatrix(matrix, rate) {
|
363 |
+
for (let i = 0; i < matrix.length; i++) {
|
364 |
+
for (let j = 0; j < matrix[i].length; j++) {
|
365 |
+
if (Math.random() < rate) {
|
366 |
+
const mutationStrength = 0.5 * (1 + Math.random());
|
367 |
+
matrix[i][j] += (Math.random() - 0.5) * mutationStrength;
|
368 |
+
matrix[i][j] = Math.max(-5, Math.min(5, matrix[i][j])); // Clamp weights
|
369 |
+
}
|
370 |
+
}
|
371 |
+
}
|
372 |
+
}
|
373 |
+
|
374 |
+
mutateArray(array, rate) {
|
375 |
+
for (let i = 0; i < array.length; i++) {
|
376 |
+
if (Math.random() < rate) {
|
377 |
+
const mutationStrength = 0.5 * (1 + Math.random());
|
378 |
+
array[i] += (Math.random() - 0.5) * mutationStrength;
|
379 |
+
array[i] = Math.max(-5, Math.min(5, array[i])); // Clamp values
|
380 |
+
}
|
381 |
+
}
|
382 |
+
}
|
383 |
+
|
384 |
+
// Crossover with compatibility checking
|
385 |
+
crossover(other) {
|
386 |
+
const child = new EnhancedNeuralNetwork();
|
387 |
+
|
388 |
+
// Blend weights and biases
|
389 |
+
for (let layer = 0; layer < this.weights.length; layer++) {
|
390 |
+
for (let i = 0; i < this.weights[layer].length; i++) {
|
391 |
+
for (let j = 0; j < this.weights[layer][i].length; j++) {
|
392 |
+
child.weights[layer][i][j] = Math.random() < 0.5 ?
|
393 |
+
this.weights[layer][i][j] : other.weights[layer][i][j];
|
394 |
+
}
|
395 |
+
}
|
396 |
+
|
397 |
+
for (let i = 0; i < this.biases[layer].length; i++) {
|
398 |
+
child.biases[layer][i] = Math.random() < 0.5 ?
|
399 |
+
this.biases[layer][i] : other.biases[layer][i];
|
400 |
+
}
|
401 |
+
}
|
402 |
+
|
403 |
+
// Blend personality traits
|
404 |
+
Object.keys(this.personalityTraits).forEach(trait => {
|
405 |
+
child.personalityTraits[trait] = (this.personalityTraits[trait] + other.personalityTraits[trait]) / 2;
|
406 |
+
});
|
407 |
+
|
408 |
+
return child;
|
409 |
+
}
|
410 |
+
|
411 |
+
copy() {
|
412 |
+
const newNN = new EnhancedNeuralNetwork();
|
413 |
+
|
414 |
+
// Deep copy all components
|
415 |
+
newNN.weights = this.weights.map(matrix =>
|
416 |
+
matrix.map(row => [...row])
|
417 |
+
);
|
418 |
+
newNN.biases = this.biases.map(bias => [...bias]);
|
419 |
+
newNN.attentionWeights = [...this.attentionWeights];
|
420 |
+
newNN.memory = [...this.memory];
|
421 |
+
newNN.memoryPointer = this.memoryPointer;
|
422 |
+
newNN.innovationGenes = [...this.innovationGenes];
|
423 |
+
newNN.personalityTraits = {...this.personalityTraits};
|
424 |
+
|
425 |
+
return newNN;
|
426 |
+
}
|
427 |
+
|
428 |
+
// Calculate network complexity for visualization
|
429 |
+
getComplexity() {
|
430 |
+
let totalConnections = 0;
|
431 |
+
this.weights.forEach(matrix => {
|
432 |
+
totalConnections += matrix.length * matrix[0].length;
|
433 |
+
});
|
434 |
+
return totalConnections;
|
435 |
+
}
|
436 |
+
}
|
437 |
+
|
438 |
+
// Enhanced AI Car with advanced behaviors
|
439 |
+
class EnhancedAICar {
|
440 |
+
constructor(x = 0, z = 0) {
|
441 |
+
this.brain = new EnhancedNeuralNetwork();
|
442 |
+
this.mesh = this.createCarMesh();
|
443 |
+
this.mesh.position.set(x, 1, z);
|
444 |
+
|
445 |
+
// Enhanced movement properties
|
446 |
+
this.velocity = new THREE.Vector3(
|
447 |
+
(Math.random() - 0.5) * 10, 0, (Math.random() - 0.5) * 10
|
448 |
+
);
|
449 |
+
this.acceleration = new THREE.Vector3();
|
450 |
+
this.maxSpeed = 25;
|
451 |
+
this.minSpeed = 3;
|
452 |
+
this.accelerationForce = 0.6;
|
453 |
+
this.turnSpeed = 0.1;
|
454 |
+
|
455 |
+
// Advanced flocking and behavior
|
456 |
+
this.neighbors = [];
|
457 |
+
this.role = 'follower'; // leader, follower, explorer, scout
|
458 |
+
this.flockId = -1;
|
459 |
+
this.speciesId = 0;
|
460 |
+
this.leadership = this.brain.personalityTraits.leadership;
|
461 |
+
this.exploration = this.brain.personalityTraits.exploration;
|
462 |
+
this.cooperation = this.brain.personalityTraits.cooperation;
|
463 |
+
|
464 |
+
// Enhanced fitness and metrics
|
465 |
+
this.fitness = 0;
|
466 |
+
this.rawFitness = 0;
|
467 |
+
this.adjustedFitness = 0;
|
468 |
+
this.distanceTraveled = 0;
|
469 |
+
this.explorationBonus = 0;
|
470 |
+
this.cooperationScore = 0;
|
471 |
+
this.leadershipScore = 0;
|
472 |
+
this.innovationScore = 0;
|
473 |
+
this.decisionQuality = 50;
|
474 |
+
this.predictiveAccuracy = 0;
|
475 |
+
|
476 |
+
// State tracking
|
477 |
+
this.timeAlive = 100;
|
478 |
+
this.crashed = false;
|
479 |
+
this.lastPosition = new THREE.Vector3(x, 1, z);
|
480 |
+
this.visitedAreas = new Set();
|
481 |
+
this.decisions = [];
|
482 |
+
this.predictions = [];
|
483 |
+
|
484 |
+
// Enhanced sensors
|
485 |
+
this.sensors = Array(12).fill(0); // More sensors
|
486 |
+
this.environmentSensors = Array(4).fill(0);
|
487 |
+
this.socialSensors = Array(8).fill(0);
|
488 |
+
this.sensorRays = [];
|
489 |
+
this.flockLines = [];
|
490 |
+
|
491 |
+
this.createSensorRays();
|
492 |
+
this.createFlockVisualization();
|
493 |
+
this.initializeMovement();
|
494 |
+
}
|
495 |
+
|
496 |
+
createCarMesh() {
|
497 |
+
const group = new THREE.Group();
|
498 |
+
|
499 |
+
// Enhanced car body with role-based styling
|
500 |
+
const bodyGeometry = new THREE.BoxGeometry(1.5, 0.8, 3);
|
501 |
+
this.bodyMaterial = new THREE.MeshLambertMaterial({
|
502 |
+
color: new THREE.Color().setHSL(Math.random(), 0.8, 0.6)
|
503 |
+
});
|
504 |
+
const body = new THREE.Mesh(bodyGeometry, this.bodyMaterial);
|
505 |
+
body.position.y = 0.4;
|
506 |
+
body.castShadow = true;
|
507 |
+
group.add(body);
|
508 |
+
|
509 |
+
// Role indicator
|
510 |
+
const indicatorGeometry = new THREE.SphereGeometry(0.2, 8, 6);
|
511 |
+
this.roleIndicator = new THREE.Mesh(indicatorGeometry,
|
512 |
+
new THREE.MeshLambertMaterial({ color: 0xffffff }));
|
513 |
+
this.roleIndicator.position.set(0, 1.5, 0);
|
514 |
+
group.add(this.roleIndicator);
|
515 |
+
|
516 |
+
// Intelligence indicator (size based on neural complexity)
|
517 |
+
const complexity = this.brain.getComplexity();
|
518 |
+
const brainSize = 0.1 + (complexity / 10000) * 0.4;
|
519 |
+
const brainGeometry = new THREE.SphereGeometry(brainSize, 6, 4);
|
520 |
+
this.brainIndicator = new THREE.Mesh(brainGeometry,
|
521 |
+
new THREE.MeshLambertMaterial({
|
522 |
+
color: 0x00ffff,
|
523 |
+
transparent: true,
|
524 |
+
opacity: 0.7
|
525 |
+
}));
|
526 |
+
this.brainIndicator.position.set(0, 1.8, 0);
|
527 |
+
group.add(this.brainIndicator);
|
528 |
+
|
529 |
+
// Enhanced wheels with rotation
|
530 |
+
const wheelGeometry = new THREE.CylinderGeometry(0.3, 0.3, 0.2, 8);
|
531 |
+
const wheelMaterial = new THREE.MeshLambertMaterial({ color: 0x333333 });
|
532 |
+
|
533 |
+
this.wheels = [];
|
534 |
+
const wheelPositions = [
|
535 |
+
[-0.8, 0, 1.2], [0.8, 0, 1.2],
|
536 |
+
[-0.8, 0, -1.2], [0.8, 0, -1.2]
|
537 |
+
];
|
538 |
+
|
539 |
+
wheelPositions.forEach((pos, i) => {
|
540 |
+
const wheel = new THREE.Mesh(wheelGeometry, wheelMaterial);
|
541 |
+
wheel.position.set(...pos);
|
542 |
+
wheel.rotation.z = Math.PI / 2;
|
543 |
+
this.wheels.push(wheel);
|
544 |
+
group.add(wheel);
|
545 |
+
});
|
546 |
+
|
547 |
+
return group;
|
548 |
+
}
|
549 |
+
|
550 |
+
createSensorRays() {
|
551 |
+
const sensorMaterial = new THREE.LineBasicMaterial({
|
552 |
+
color: 0xff0000,
|
553 |
+
transparent: true,
|
554 |
+
opacity: 0.3
|
555 |
+
});
|
556 |
+
|
557 |
+
// 12 sensors for comprehensive environment detection
|
558 |
+
for (let i = 0; i < 12; i++) {
|
559 |
+
const geometry = new THREE.BufferGeometry().setFromPoints([
|
560 |
+
new THREE.Vector3(0, 0, 0),
|
561 |
+
new THREE.Vector3(0, 0, 8)
|
562 |
+
]);
|
563 |
+
const ray = new THREE.Line(geometry, sensorMaterial);
|
564 |
+
this.sensorRays.push(ray);
|
565 |
+
this.mesh.add(ray);
|
566 |
+
}
|
567 |
+
}
|
568 |
+
|
569 |
+
createFlockVisualization() {
|
570 |
+
const flockMaterial = new THREE.LineBasicMaterial({
|
571 |
+
color: 0x00ff00,
|
572 |
+
transparent: true,
|
573 |
+
opacity: 0.3
|
574 |
+
});
|
575 |
+
|
576 |
+
for (let i = 0; i < 8; i++) {
|
577 |
+
const geometry = new THREE.BufferGeometry().setFromPoints([
|
578 |
+
new THREE.Vector3(0, 2, 0),
|
579 |
+
new THREE.Vector3(0, 2, 0)
|
580 |
+
]);
|
581 |
+
const line = new THREE.Line(geometry, flockMaterial);
|
582 |
+
this.flockLines.push(line);
|
583 |
+
if (showFlockLines) scene.add(line);
|
584 |
+
}
|
585 |
+
}
|
586 |
+
|
587 |
+
initializeMovement() {
|
588 |
+
this.mesh.rotation.y = Math.random() * Math.PI * 2;
|
589 |
+
this.velocity.set(
|
590 |
+
Math.sin(this.mesh.rotation.y) * (8 + Math.random() * 7),
|
591 |
+
0,
|
592 |
+
Math.cos(this.mesh.rotation.y) * (8 + Math.random() * 7)
|
593 |
+
);
|
594 |
+
}
|
595 |
+
|
596 |
+
updateEnhancedSensors() {
|
597 |
+
const maxDistance = 8;
|
598 |
+
const raycaster = new THREE.Raycaster();
|
599 |
+
|
600 |
+
// 12-direction sensor array
|
601 |
+
const sensorAngles = [];
|
602 |
+
for (let i = 0; i < 12; i++) {
|
603 |
+
sensorAngles.push((i * Math.PI * 2) / 12);
|
604 |
+
}
|
605 |
+
|
606 |
+
sensorAngles.forEach((angle, i) => {
|
607 |
+
const direction = new THREE.Vector3(
|
608 |
+
Math.sin(angle), 0, Math.cos(angle)
|
609 |
+
);
|
610 |
+
direction.applyQuaternion(this.mesh.quaternion);
|
611 |
+
|
612 |
+
raycaster.set(this.mesh.position, direction);
|
613 |
+
const intersects = raycaster.intersectObjects(this.getObstacles(), true);
|
614 |
+
|
615 |
+
if (intersects.length > 0 && intersects[0].distance <= maxDistance) {
|
616 |
+
this.sensors[i] = 1 - (intersects[0].distance / maxDistance);
|
617 |
+
} else {
|
618 |
+
this.sensors[i] = 0;
|
619 |
+
}
|
620 |
+
|
621 |
+
// Update visual ray
|
622 |
+
const endDistance = intersects.length > 0 ?
|
623 |
+
Math.min(intersects[0].distance, maxDistance) : maxDistance;
|
624 |
+
|
625 |
+
const rayEnd = direction.clone().multiplyScalar(endDistance);
|
626 |
+
this.sensorRays[i].geometry.setFromPoints([
|
627 |
+
new THREE.Vector3(0, 0, 0), rayEnd
|
628 |
+
]);
|
629 |
+
});
|
630 |
+
|
631 |
+
// Environment sensors
|
632 |
+
this.updateEnvironmentSensors();
|
633 |
+
}
|
634 |
+
|
635 |
+
updateEnvironmentSensors() {
|
636 |
+
const pos = this.mesh.position;
|
637 |
+
|
638 |
+
// Road detection with direction
|
639 |
+
this.environmentSensors[0] = this.detectRoadPosition();
|
640 |
+
|
641 |
+
// Obstacle density in area
|
642 |
+
let nearbyObstacles = 0;
|
643 |
+
population.forEach(other => {
|
644 |
+
if (other !== this && !other.crashed) {
|
645 |
+
const dist = pos.distanceTo(other.mesh.position);
|
646 |
+
if (dist < 20) nearbyObstacles++;
|
647 |
+
}
|
648 |
+
});
|
649 |
+
this.environmentSensors[1] = Math.min(nearbyObstacles / 5, 1);
|
650 |
+
|
651 |
+
// Target/goal direction (if any targets exist)
|
652 |
+
this.environmentSensors[2] = this.getTargetDirection();
|
653 |
+
|
654 |
+
// Exploration potential
|
655 |
+
this.environmentSensors[3] = this.getExplorationPotential();
|
656 |
+
}
|
657 |
+
|
658 |
+
updateAdvancedFlocking() {
|
659 |
+
this.neighbors = [];
|
660 |
+
this.socialSensors.fill(0);
|
661 |
+
|
662 |
+
let separation = new THREE.Vector3();
|
663 |
+
let alignment = new THREE.Vector3();
|
664 |
+
let cohesion = new THREE.Vector3();
|
665 |
+
let leadership = new THREE.Vector3();
|
666 |
+
|
667 |
+
let neighborCount = 0;
|
668 |
+
let leaderInfluence = 0;
|
669 |
+
|
670 |
+
population.forEach(other => {
|
671 |
+
if (other !== this && !other.crashed) {
|
672 |
+
const distance = this.mesh.position.distanceTo(other.mesh.position);
|
673 |
+
|
674 |
+
if (distance < NEIGHBOR_RADIUS && distance > 0) {
|
675 |
+
this.neighbors.push(other);
|
676 |
+
|
677 |
+
// Traditional flocking forces
|
678 |
+
cohesion.add(other.mesh.position);
|
679 |
+
alignment.add(other.velocity);
|
680 |
+
|
681 |
+
// Leadership dynamics
|
682 |
+
if (other.role === 'leader' && distance < LEADERSHIP_RADIUS) {
|
683 |
+
const influence = other.leadership * (1 - distance / LEADERSHIP_RADIUS);
|
684 |
+
leadership.add(other.velocity.clone().multiplyScalar(influence));
|
685 |
+
leaderInfluence += influence;
|
686 |
+
}
|
687 |
+
|
688 |
+
neighborCount++;
|
689 |
+
}
|
690 |
+
|
691 |
+
if (distance < SEPARATION_RADIUS && distance > 0) {
|
692 |
+
const diff = this.mesh.position.clone().sub(other.mesh.position);
|
693 |
+
diff.normalize().divideScalar(distance);
|
694 |
+
separation.add(diff);
|
695 |
+
}
|
696 |
+
}
|
697 |
+
});
|
698 |
+
|
699 |
+
// Finalize flocking forces
|
700 |
+
if (neighborCount > 0) {
|
701 |
+
cohesion.divideScalar(neighborCount).sub(this.mesh.position).normalize();
|
702 |
+
alignment.divideScalar(neighborCount).normalize();
|
703 |
+
this.cooperationScore += neighborCount * 0.1;
|
704 |
+
}
|
705 |
+
|
706 |
+
if (leaderInfluence > 0) {
|
707 |
+
leadership.normalize();
|
708 |
+
}
|
709 |
+
|
710 |
+
// Update social sensors
|
711 |
+
this.socialSensors[0] = Math.min(neighborCount / 10, 1); // Neighbor density
|
712 |
+
this.socialSensors[1] = separation.length(); // Separation strength
|
713 |
+
this.socialSensors[2] = alignment.length(); // Alignment strength
|
714 |
+
this.socialSensors[3] = cohesion.length(); // Cohesion strength
|
715 |
+
this.socialSensors[4] = leadership.length(); // Leadership influence
|
716 |
+
this.socialSensors[5] = this.leadership; // Own leadership
|
717 |
+
this.socialSensors[6] = this.cooperation; // Cooperation tendency
|
718 |
+
this.socialSensors[7] = this.role === 'leader' ? 1 : 0; // Role indicator
|
719 |
+
|
720 |
+
// Store forces for neural network
|
721 |
+
this.flockingForces = { separation, alignment, cohesion, leadership };
|
722 |
+
|
723 |
+
// Update role based on behavior
|
724 |
+
this.updateRole();
|
725 |
+
}
|
726 |
+
|
727 |
+
updateRole() {
|
728 |
+
const neighborCount = this.neighbors.length;
|
729 |
+
|
730 |
+
if (this.leadership > 0.7 && neighborCount > 2) {
|
731 |
+
this.role = 'leader';
|
732 |
+
this.leadershipScore += 1;
|
733 |
+
} else if (this.exploration > 0.8 && neighborCount < 2) {
|
734 |
+
this.role = 'explorer';
|
735 |
+
this.explorationBonus += this.velocity.length() * 0.1;
|
736 |
+
} else if (neighborCount > 0) {
|
737 |
+
this.role = 'follower';
|
738 |
+
} else {
|
739 |
+
this.role = 'scout';
|
740 |
+
}
|
741 |
+
|
742 |
+
// Update visual indicator
|
743 |
+
const colors = {
|
744 |
+
leader: 0xff00ff,
|
745 |
+
explorer: 0x00ffff,
|
746 |
+
follower: 0x88ff88,
|
747 |
+
scout: 0xffff00
|
748 |
+
};
|
749 |
+
this.roleIndicator.material.color.setHex(colors[this.role]);
|
750 |
+
}
|
751 |
+
|
752 |
+
getEnhancedInputs() {
|
753 |
+
// Comprehensive input vector
|
754 |
+
return [
|
755 |
+
...this.sensors, // 12 obstacle sensors
|
756 |
+
...this.environmentSensors, // 4 environment sensors
|
757 |
+
...this.socialSensors, // 8 social sensors
|
758 |
+
];
|
759 |
+
}
|
760 |
+
|
761 |
+
makeDecision(inputs, outputs) {
|
762 |
+
// Enhanced decision making with prediction
|
763 |
+
const decision = {
|
764 |
+
timestamp: Date.now(),
|
765 |
+
inputs: [...inputs],
|
766 |
+
outputs: [...outputs],
|
767 |
+
prediction: this.makePrediction(inputs),
|
768 |
+
confidence: this.calculateConfidence(outputs)
|
769 |
+
};
|
770 |
+
|
771 |
+
this.decisions.push(decision);
|
772 |
+
if (this.decisions.length > 20) {
|
773 |
+
this.decisions.shift();
|
774 |
+
}
|
775 |
+
|
776 |
+
// Update decision quality based on outcomes
|
777 |
+
this.updateDecisionQuality();
|
778 |
+
|
779 |
+
return outputs;
|
780 |
+
}
|
781 |
+
|
782 |
+
makePrediction(inputs) {
|
783 |
+
// Simple prediction: where will I be in 5 steps?
|
784 |
+
const prediction = this.mesh.position.clone().add(
|
785 |
+
this.velocity.clone().multiplyScalar(5)
|
786 |
+
);
|
787 |
+
|
788 |
+
this.predictions.push({
|
789 |
+
timestamp: Date.now(),
|
790 |
+
predicted: prediction,
|
791 |
+
actual: null // Will be filled later
|
792 |
+
});
|
793 |
+
|
794 |
+
return prediction;
|
795 |
+
}
|
796 |
+
|
797 |
+
calculateConfidence(outputs) {
|
798 |
+
// Confidence based on output certainty
|
799 |
+
const variance = outputs.reduce((sum, val) => sum + Math.pow(val - 0.5, 2), 0);
|
800 |
+
return Math.min(variance * 2, 1);
|
801 |
+
}
|
802 |
+
|
803 |
+
updateDecisionQuality() {
|
804 |
+
// Evaluate prediction accuracy
|
805 |
+
let accuracy = 0;
|
806 |
+
let validPredictions = 0;
|
807 |
+
|
808 |
+
this.predictions.forEach(pred => {
|
809 |
+
if (pred.actual) {
|
810 |
+
const error = pred.predicted.distanceTo(pred.actual);
|
811 |
+
accuracy += Math.max(0, 1 - error / 50); // Normalize error
|
812 |
+
validPredictions++;
|
813 |
+
}
|
814 |
+
});
|
815 |
+
|
816 |
+
if (validPredictions > 0) {
|
817 |
+
this.predictiveAccuracy = accuracy / validPredictions;
|
818 |
+
this.decisionQuality = this.predictiveAccuracy * 100;
|
819 |
+
}
|
820 |
+
}
|
821 |
+
|
822 |
+
detectRoadPosition() {
|
823 |
+
const pos = this.mesh.position;
|
824 |
+
const roadWidth = 12;
|
825 |
+
const roadSpacing = 150;
|
826 |
+
|
827 |
+
const nearestHorizontalRoad = Math.round(pos.z / roadSpacing) * roadSpacing;
|
828 |
+
const distToHorizontalRoad = Math.abs(pos.z - nearestHorizontalRoad);
|
829 |
+
const onHorizontalRoad = distToHorizontalRoad <= roadWidth / 2;
|
830 |
+
|
831 |
+
const nearestVerticalRoad = Math.round(pos.x / roadSpacing) * roadSpacing;
|
832 |
+
const distToVerticalRoad = Math.abs(pos.x - nearestVerticalRoad);
|
833 |
+
const onVerticalRoad = distToVerticalRoad <= roadWidth / 2;
|
834 |
+
|
835 |
+
if (onHorizontalRoad || onVerticalRoad) {
|
836 |
+
return Math.max(
|
837 |
+
onHorizontalRoad ? 1 - (distToHorizontalRoad / (roadWidth / 2)) : 0,
|
838 |
+
onVerticalRoad ? 1 - (distToVerticalRoad / (roadWidth / 2)) : 0
|
839 |
+
);
|
840 |
+
}
|
841 |
+
|
842 |
+
return 0;
|
843 |
+
}
|
844 |
+
|
845 |
+
getTargetDirection() {
|
846 |
+
// Find nearest unexplored area or target
|
847 |
+
if (world.targets.length > 0) {
|
848 |
+
const nearest = world.targets.reduce((closest, target) => {
|
849 |
+
const dist = this.mesh.position.distanceTo(target.position);
|
850 |
+
return dist < closest.distance ? { target, distance: dist } : closest;
|
851 |
+
}, { distance: Infinity });
|
852 |
+
|
853 |
+
if (nearest.distance < 100) {
|
854 |
+
const direction = nearest.target.position.clone()
|
855 |
+
.sub(this.mesh.position).normalize();
|
856 |
+
return (direction.dot(this.velocity.clone().normalize()) + 1) / 2;
|
857 |
+
}
|
858 |
+
}
|
859 |
+
return 0.5;
|
860 |
+
}
|
861 |
+
|
862 |
+
getExplorationPotential() {
|
863 |
+
// Calculate exploration potential based on visited areas
|
864 |
+
const currentArea = `${Math.floor(this.mesh.position.x / 50)},${Math.floor(this.mesh.position.z / 50)}`;
|
865 |
+
return this.visitedAreas.has(currentArea) ? 0.2 : 0.8;
|
866 |
+
}
|
867 |
+
|
868 |
+
update(deltaTime) {
|
869 |
+
if (this.crashed) return;
|
870 |
+
|
871 |
+
this.timeAlive -= deltaTime;
|
872 |
+
if (this.timeAlive <= 0) {
|
873 |
+
this.crashed = true;
|
874 |
+
return;
|
875 |
+
}
|
876 |
+
|
877 |
+
// Update all sensors and behaviors
|
878 |
+
this.updateEnhancedSensors();
|
879 |
+
this.updateAdvancedFlocking();
|
880 |
+
this.updateVisuals();
|
881 |
+
|
882 |
+
// Get comprehensive neural network inputs
|
883 |
+
const inputs = this.getEnhancedInputs();
|
884 |
+
|
885 |
+
// Get brain decision
|
886 |
+
const outputs = this.brain.activate(inputs);
|
887 |
+
|
888 |
+
// Process decision with prediction
|
889 |
+
const processedOutputs = this.makeDecision(inputs, outputs);
|
890 |
+
|
891 |
+
// Apply enhanced movement
|
892 |
+
this.applyEnhancedMovement(processedOutputs, deltaTime);
|
893 |
+
|
894 |
+
// Update fitness with advanced metrics
|
895 |
+
this.updateAdvancedFitness(deltaTime);
|
896 |
+
|
897 |
+
// Track exploration
|
898 |
+
this.trackExploration();
|
899 |
+
|
900 |
+
this.lastPosition.copy(this.mesh.position);
|
901 |
+
this.checkCollisions();
|
902 |
+
this.keepInBounds();
|
903 |
+
}
|
904 |
+
|
905 |
+
applyEnhancedMovement(outputs, deltaTime) {
|
906 |
+
// Enhanced output interpretation
|
907 |
+
const [
|
908 |
+
forwardForce, turnLeft, turnRight, brake,
|
909 |
+
emergencyStop, boost, preciseTurn, formation
|
910 |
+
] = outputs;
|
911 |
+
|
912 |
+
// Turning with precision control
|
913 |
+
const baseTurn = (turnRight - turnLeft) * this.turnSpeed;
|
914 |
+
const precisionTurn = (preciseTurn - 0.5) * this.turnSpeed * 0.5;
|
915 |
+
const totalTurn = (baseTurn + precisionTurn) * deltaTime;
|
916 |
+
|
917 |
+
this.mesh.rotation.y += totalTurn;
|
918 |
+
|
919 |
+
// Advanced acceleration
|
920 |
+
const forward = new THREE.Vector3(0, 0, 1);
|
921 |
+
forward.applyQuaternion(this.mesh.quaternion);
|
922 |
+
|
923 |
+
let acceleration = this.accelerationForce;
|
924 |
+
|
925 |
+
// Boost behavior
|
926 |
+
if (boost > 0.7) {
|
927 |
+
acceleration *= 1.5;
|
928 |
+
this.maxSpeed = 30;
|
929 |
+
} else {
|
930 |
+
this.maxSpeed = 25;
|
931 |
+
}
|
932 |
+
|
933 |
+
// Emergency stop
|
934 |
+
if (emergencyStop > 0.8) {
|
935 |
+
this.velocity.multiplyScalar(0.8);
|
936 |
+
} else if (forwardForce > 0.1) {
|
937 |
+
this.acceleration.add(forward.multiplyScalar(acceleration * forwardForce * deltaTime));
|
938 |
+
}
|
939 |
+
|
940 |
+
// Braking
|
941 |
+
if (brake > 0.5) {
|
942 |
+
this.velocity.multiplyScalar(1 - brake * deltaTime * 2);
|
943 |
+
}
|
944 |
+
|
945 |
+
// Apply flocking forces
|
946 |
+
if (this.flockingForces) {
|
947 |
+
const flockingStrength = formation * 0.5;
|
948 |
+
this.acceleration.add(this.flockingForces.separation.multiplyScalar(0.3));
|
949 |
+
this.acceleration.add(this.flockingForces.alignment.multiplyScalar(0.2 * flockingStrength));
|
950 |
+
this.acceleration.add(this.flockingForces.cohesion.multiplyScalar(0.2 * flockingStrength));
|
951 |
+
this.acceleration.add(this.flockingForces.leadership.multiplyScalar(0.4 * (1 - this.leadership)));
|
952 |
+
}
|
953 |
+
|
954 |
+
// Apply acceleration and velocity
|
955 |
+
this.velocity.add(this.acceleration);
|
956 |
+
this.acceleration.multiplyScalar(0.1); // Decay acceleration
|
957 |
+
|
958 |
+
// Speed limits
|
959 |
+
const currentSpeed = this.velocity.length();
|
960 |
+
if (currentSpeed > this.maxSpeed) {
|
961 |
+
this.velocity.normalize().multiplyScalar(this.maxSpeed);
|
962 |
+
} else if (currentSpeed < this.minSpeed) {
|
963 |
+
this.velocity.normalize().multiplyScalar(this.minSpeed);
|
964 |
+
}
|
965 |
+
|
966 |
+
// Apply movement
|
967 |
+
this.mesh.position.add(this.velocity.clone().multiplyScalar(deltaTime));
|
968 |
+
|
969 |
+
// Wheel rotation animation
|
970 |
+
this.wheels.forEach(wheel => {
|
971 |
+
wheel.rotation.x += this.velocity.length() * deltaTime * 0.1;
|
972 |
+
});
|
973 |
+
}
|
974 |
+
|
975 |
+
updateAdvancedFitness(deltaTime) {
|
976 |
+
const distance = this.mesh.position.distanceTo(this.lastPosition);
|
977 |
+
this.distanceTraveled += distance;
|
978 |
+
|
979 |
+
// Multi-objective fitness function
|
980 |
+
const roadBonus = this.detectRoadPosition() * distance * 3;
|
981 |
+
const groupBonus = Math.min(this.neighbors.length, 8) * distance * 2;
|
982 |
+
const roleBonus = this.getRoleBonus() * deltaTime;
|
983 |
+
const innovationBonus = this.innovationScore * 0.5;
|
984 |
+
const efficiencyBonus = this.getEfficiencyBonus();
|
985 |
+
|
986 |
+
this.rawFitness = this.distanceTraveled +
|
987 |
+
roadBonus +
|
988 |
+
groupBonus +
|
989 |
+
roleBonus +
|
990 |
+
this.explorationBonus +
|
991 |
+
this.cooperationScore +
|
992 |
+
innovationBonus +
|
993 |
+
efficiencyBonus;
|
994 |
+
|
995 |
+
// Update predictions
|
996 |
+
this.predictions.forEach(pred => {
|
997 |
+
if (!pred.actual && Date.now() - pred.timestamp > 5000) {
|
998 |
+
pred.actual = this.mesh.position.clone();
|
999 |
+
}
|
1000 |
+
});
|
1001 |
+
}
|
1002 |
+
|
1003 |
+
getRoleBonus() {
|
1004 |
+
switch (this.role) {
|
1005 |
+
case 'leader': return this.leadershipScore * 0.5;
|
1006 |
+
case 'explorer': return this.explorationBonus * 0.3;
|
1007 |
+
case 'follower': return this.cooperationScore * 0.2;
|
1008 |
+
case 'scout': return this.distanceTraveled * 0.1;
|
1009 |
+
default: return 0;
|
1010 |
+
}
|
1011 |
+
}
|
1012 |
+
|
1013 |
+
getEfficiencyBonus() {
|
1014 |
+
// Reward efficient decision making
|
1015 |
+
return this.decisionQuality * 0.1 + this.predictiveAccuracy * 50;
|
1016 |
+
}
|
1017 |
+
|
1018 |
+
trackExploration() {
|
1019 |
+
const area = `${Math.floor(this.mesh.position.x / 25)},${Math.floor(this.mesh.position.z / 25)}`;
|
1020 |
+
if (!this.visitedAreas.has(area)) {
|
1021 |
+
this.visitedAreas.add(area);
|
1022 |
+
this.explorationBonus += 10;
|
1023 |
+
}
|
1024 |
+
}
|
1025 |
+
|
1026 |
+
updateVisuals() {
|
1027 |
+
// Update car color based on role and performance
|
1028 |
+
this.updateCarColor();
|
1029 |
+
this.updateFlockVisualization();
|
1030 |
+
|
1031 |
+
// Brain indicator pulsing based on activity
|
1032 |
+
const brainActivity = this.brain.memory.reduce((sum, val) => sum + Math.abs(val), 0);
|
1033 |
+
this.brainIndicator.material.opacity = 0.5 + (brainActivity * 0.1);
|
1034 |
+
}
|
1035 |
+
|
1036 |
+
updateCarColor() {
|
1037 |
+
const hue = this.speciesId * 0.2;
|
1038 |
+
let saturation = 0.8;
|
1039 |
+
let lightness = 0.6;
|
1040 |
+
|
1041 |
+
// Role-based color modifications
|
1042 |
+
switch (this.role) {
|
1043 |
+
case 'leader':
|
1044 |
+
saturation = 1.0;
|
1045 |
+
lightness = 0.7;
|
1046 |
+
break;
|
1047 |
+
case 'explorer':
|
1048 |
+
saturation = 0.9;
|
1049 |
+
lightness = 0.8;
|
1050 |
+
break;
|
1051 |
+
case 'follower':
|
1052 |
+
saturation = 0.7;
|
1053 |
+
lightness = 0.5;
|
1054 |
+
break;
|
1055 |
+
}
|
1056 |
+
|
1057 |
+
// Performance-based brightness
|
1058 |
+
const performanceBonus = Math.min(this.rawFitness / 1000, 0.3);
|
1059 |
+
lightness += performanceBonus;
|
1060 |
+
|
1061 |
+
this.bodyMaterial.color.setHSL(hue, saturation, lightness);
|
1062 |
+
}
|
1063 |
+
|
1064 |
+
updateFlockVisualization() {
|
1065 |
+
if (!showFlockLines) return;
|
1066 |
+
|
1067 |
+
const nearestNeighbors = this.neighbors
|
1068 |
+
.sort((a, b) => {
|
1069 |
+
const distA = this.mesh.position.distanceTo(a.mesh.position);
|
1070 |
+
const distB = this.mesh.position.distanceTo(b.mesh.position);
|
1071 |
+
return distA - distB;
|
1072 |
+
})
|
1073 |
+
.slice(0, 8);
|
1074 |
+
|
1075 |
+
for (let i = 0; i < this.flockLines.length; i++) {
|
1076 |
+
if (i < nearestNeighbors.length) {
|
1077 |
+
const start = this.mesh.position.clone();
|
1078 |
+
start.y = 2;
|
1079 |
+
const end = nearestNeighbors[i].mesh.position.clone();
|
1080 |
+
end.y = 2;
|
1081 |
+
|
1082 |
+
this.flockLines[i].geometry.setFromPoints([start, end]);
|
1083 |
+
this.flockLines[i].visible = true;
|
1084 |
+
|
1085 |
+
// Color based on relationship
|
1086 |
+
if (nearestNeighbors[i].role === 'leader') {
|
1087 |
+
this.flockLines[i].material.color.setHex(0xff00ff);
|
1088 |
+
} else {
|
1089 |
+
this.flockLines[i].material.color.setHex(0x00ff00);
|
1090 |
+
}
|
1091 |
+
} else {
|
1092 |
+
this.flockLines[i].visible = false;
|
1093 |
+
}
|
1094 |
+
}
|
1095 |
+
}
|
1096 |
+
|
1097 |
+
getObstacles() {
|
1098 |
+
let obstacles = [];
|
1099 |
+
population.forEach(car => {
|
1100 |
+
if (car !== this && !car.crashed) {
|
1101 |
+
obstacles.push(car.mesh);
|
1102 |
+
}
|
1103 |
+
});
|
1104 |
+
|
1105 |
+
world.buildings.forEach(building => {
|
1106 |
+
obstacles.push(building.mesh);
|
1107 |
+
});
|
1108 |
+
|
1109 |
+
world.dynamicObstacles.forEach(obstacle => {
|
1110 |
+
obstacles.push(obstacle.mesh);
|
1111 |
+
});
|
1112 |
+
|
1113 |
+
return obstacles;
|
1114 |
+
}
|
1115 |
+
|
1116 |
+
checkCollisions() {
|
1117 |
+
const carBox = new THREE.Box3().setFromObject(this.mesh);
|
1118 |
+
|
1119 |
+
// Enhanced collision detection
|
1120 |
+
population.forEach(otherCar => {
|
1121 |
+
if (otherCar !== this && !otherCar.crashed) {
|
1122 |
+
const otherBox = new THREE.Box3().setFromObject(otherCar.mesh);
|
1123 |
+
if (carBox.intersectsBox(otherBox)) {
|
1124 |
+
// Soft collision - reduce speed instead of crash
|
1125 |
+
const collisionForce = new THREE.Vector3()
|
1126 |
+
.subVectors(this.mesh.position, otherCar.mesh.position)
|
1127 |
+
.normalize()
|
1128 |
+
.multiplyScalar(5);
|
1129 |
+
|
1130 |
+
this.velocity.add(collisionForce);
|
1131 |
+
otherCar.velocity.sub(collisionForce);
|
1132 |
+
|
1133 |
+
// Small fitness penalty
|
1134 |
+
this.rawFitness -= 10;
|
1135 |
+
otherCar.rawFitness -= 10;
|
1136 |
+
}
|
1137 |
+
}
|
1138 |
+
});
|
1139 |
+
|
1140 |
+
// Building collisions
|
1141 |
+
world.buildings.forEach(building => {
|
1142 |
+
const buildingBox = new THREE.Box3().setFromObject(building.mesh);
|
1143 |
+
if (carBox.intersectsBox(buildingBox)) {
|
1144 |
+
this.crashed = true;
|
1145 |
+
crashCount++;
|
1146 |
+
}
|
1147 |
+
});
|
1148 |
+
}
|
1149 |
+
|
1150 |
+
keepInBounds() {
|
1151 |
+
const bounds = 400;
|
1152 |
+
if (Math.abs(this.mesh.position.x) > bounds ||
|
1153 |
+
Math.abs(this.mesh.position.z) > bounds) {
|
1154 |
+
if (Math.abs(this.mesh.position.x) > bounds) {
|
1155 |
+
this.mesh.position.x = Math.sign(this.mesh.position.x) * bounds;
|
1156 |
+
this.velocity.x *= -0.7;
|
1157 |
+
}
|
1158 |
+
if (Math.abs(this.mesh.position.z) > bounds) {
|
1159 |
+
this.mesh.position.z = Math.sign(this.mesh.position.z) * bounds;
|
1160 |
+
this.velocity.z *= -0.7;
|
1161 |
+
}
|
1162 |
+
this.rawFitness -= 5; // Boundary penalty
|
1163 |
+
}
|
1164 |
+
}
|
1165 |
+
|
1166 |
+
destroy() {
|
1167 |
+
this.flockLines.forEach(line => {
|
1168 |
+
if (line.parent) scene.remove(line);
|
1169 |
+
});
|
1170 |
+
if (this.mesh.parent) {
|
1171 |
+
scene.remove(this.mesh);
|
1172 |
+
}
|
1173 |
+
}
|
1174 |
+
}
|
1175 |
+
|
1176 |
+
// Enhanced speciation system
|
1177 |
+
function calculateCompatibility(brain1, brain2) {
|
1178 |
+
let weightDiff = 0;
|
1179 |
+
let totalWeights = 0;
|
1180 |
+
|
1181 |
+
// Compare all weight matrices
|
1182 |
+
for (let layer = 0; layer < brain1.weights.length; layer++) {
|
1183 |
+
for (let i = 0; i < brain1.weights[layer].length; i++) {
|
1184 |
+
for (let j = 0; j < brain1.weights[layer][i].length; j++) {
|
1185 |
+
weightDiff += Math.abs(brain1.weights[layer][i][j] - brain2.weights[layer][i][j]);
|
1186 |
+
totalWeights++;
|
1187 |
+
}
|
1188 |
+
}
|
1189 |
+
}
|
1190 |
+
|
1191 |
+
// Compare personality traits
|
1192 |
+
let traitDiff = 0;
|
1193 |
+
Object.keys(brain1.personalityTraits).forEach(trait => {
|
1194 |
+
traitDiff += Math.abs(brain1.personalityTraits[trait] - brain2.personalityTraits[trait]);
|
1195 |
+
});
|
1196 |
+
|
1197 |
+
return (weightDiff / totalWeights) + (traitDiff / 5);
|
1198 |
+
}
|
1199 |
+
|
1200 |
+
function speciate() {
|
1201 |
+
species = [];
|
1202 |
+
|
1203 |
+
population.forEach(individual => {
|
1204 |
+
let foundSpecies = false;
|
1205 |
+
|
1206 |
+
for (let s of species) {
|
1207 |
+
if (s.members.length > 0) {
|
1208 |
+
const representative = s.members[0];
|
1209 |
+
const compatibility = calculateCompatibility(individual.brain, representative.brain);
|
1210 |
+
|
1211 |
+
if (compatibility < SPECIES_THRESHOLD) {
|
1212 |
+
s.members.push(individual);
|
1213 |
+
individual.speciesId = s.id;
|
1214 |
+
foundSpecies = true;
|
1215 |
+
break;
|
1216 |
+
}
|
1217 |
+
}
|
1218 |
+
}
|
1219 |
+
|
1220 |
+
if (!foundSpecies) {
|
1221 |
+
const newSpecies = {
|
1222 |
+
id: species.length,
|
1223 |
+
members: [individual],
|
1224 |
+
avgFitness: 0,
|
1225 |
+
staleness: 0,
|
1226 |
+
bestFitness: 0
|
1227 |
+
};
|
1228 |
+
species.push(newSpecies);
|
1229 |
+
individual.speciesId = newSpecies.id;
|
1230 |
+
}
|
1231 |
+
});
|
1232 |
+
|
1233 |
+
// Calculate species fitness
|
1234 |
+
species.forEach(s => {
|
1235 |
+
if (s.members.length > 0) {
|
1236 |
+
s.avgFitness = s.members.reduce((sum, ind) => sum + ind.rawFitness, 0) / s.members.length;
|
1237 |
+
s.bestFitness = Math.max(...s.members.map(ind => ind.rawFitness));
|
1238 |
+
|
1239 |
+
// Adjust individual fitness by species size (fitness sharing)
|
1240 |
+
s.members.forEach(ind => {
|
1241 |
+
ind.adjustedFitness = ind.rawFitness / s.members.length;
|
1242 |
+
});
|
1243 |
+
}
|
1244 |
+
});
|
1245 |
+
|
1246 |
+
// Remove empty species
|
1247 |
+
species = species.filter(s => s.members.length > 0);
|
1248 |
+
}
|
1249 |
+
|
1250 |
+
function init() {
|
1251 |
+
// Enhanced scene setup
|
1252 |
+
scene = new THREE.Scene();
|
1253 |
+
scene.background = new THREE.Color(0x87CEEB);
|
1254 |
+
scene.fog = new THREE.Fog(0x87CEEB, 400, 1200);
|
1255 |
+
|
1256 |
+
camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 0.1, 2000);
|
1257 |
+
camera.position.set(0, 120, 120);
|
1258 |
+
camera.lookAt(0, 0, 0);
|
1259 |
+
|
1260 |
+
renderer = new THREE.WebGLRenderer({ antialias: true });
|
1261 |
+
renderer.setSize(window.innerWidth, window.innerHeight);
|
1262 |
+
renderer.shadowMap.enabled = true;
|
1263 |
+
renderer.shadowMap.type = THREE.PCFSoftShadowMap;
|
1264 |
+
renderer.setClearColor(0x001122);
|
1265 |
+
document.body.appendChild(renderer.domElement);
|
1266 |
+
|
1267 |
+
// Enhanced lighting
|
1268 |
+
const ambientLight = new THREE.AmbientLight(0x404040, 0.6);
|
1269 |
+
scene.add(ambientLight);
|
1270 |
+
|
1271 |
+
const directionalLight = new THREE.DirectionalLight(0xffffff, 0.8);
|
1272 |
+
directionalLight.position.set(100, 100, 50);
|
1273 |
+
directionalLight.castShadow = true;
|
1274 |
+
directionalLight.shadow.mapSize.width = 2048;
|
1275 |
+
directionalLight.shadow.mapSize.height = 2048;
|
1276 |
+
scene.add(directionalLight);
|
1277 |
+
|
1278 |
+
// Create enhanced world
|
1279 |
+
createEnhancedWorld();
|
1280 |
+
createInitialPopulation();
|
1281 |
+
|
1282 |
+
clock = new THREE.Clock();
|
1283 |
+
|
1284 |
+
// Event listeners
|
1285 |
+
window.addEventListener('resize', onWindowResize);
|
1286 |
+
setupEventListeners();
|
1287 |
+
|
1288 |
+
animate();
|
1289 |
+
}
|
1290 |
+
|
1291 |
+
function createEnhancedWorld() {
|
1292 |
+
// Enhanced ground with texture variation
|
1293 |
+
const groundGeometry = new THREE.PlaneGeometry(1000, 1000);
|
1294 |
+
const groundMaterial = new THREE.MeshLambertMaterial({
|
1295 |
+
color: 0x228B22,
|
1296 |
+
transparent: true,
|
1297 |
+
opacity: 0.9
|
1298 |
+
});
|
1299 |
+
const ground = new THREE.Mesh(groundGeometry, groundMaterial);
|
1300 |
+
ground.rotation.x = -Math.PI / 2;
|
1301 |
+
ground.receiveShadow = true;
|
1302 |
+
scene.add(ground);
|
1303 |
+
|
1304 |
+
createRoadNetwork();
|
1305 |
+
createObstacles();
|
1306 |
+
createDynamicEnvironment();
|
1307 |
+
}
|
1308 |
+
|
1309 |
+
function createRoadNetwork() {
|
1310 |
+
const roadMaterial = new THREE.MeshLambertMaterial({ color: 0x444444 });
|
1311 |
+
|
1312 |
+
for (let i = -300; i <= 300; i += 150) {
|
1313 |
+
// Horizontal roads
|
1314 |
+
const hRoadGeometry = new THREE.PlaneGeometry(600, 12);
|
1315 |
+
const hRoad = new THREE.Mesh(hRoadGeometry, roadMaterial);
|
1316 |
+
hRoad.rotation.x = -Math.PI / 2;
|
1317 |
+
hRoad.position.set(0, 0.1, i);
|
1318 |
+
scene.add(hRoad);
|
1319 |
+
|
1320 |
+
// Vertical roads
|
1321 |
+
const vRoadGeometry = new THREE.PlaneGeometry(12, 600);
|
1322 |
+
const vRoad = new THREE.Mesh(vRoadGeometry, roadMaterial);
|
1323 |
+
vRoad.rotation.x = -Math.PI / 2;
|
1324 |
+
vRoad.position.set(i, 0.1, 0);
|
1325 |
+
scene.add(vRoad);
|
1326 |
+
}
|
1327 |
+
}
|
1328 |
+
|
1329 |
+
function createObstacles() {
|
1330 |
+
world.buildings = [];
|
1331 |
+
const buildingMaterial = new THREE.MeshLambertMaterial({ color: 0x666666 });
|
1332 |
+
|
1333 |
+
for (let i = 0; i < 20; i++) {
|
1334 |
+
const x = (Math.random() - 0.5) * 700;
|
1335 |
+
const z = (Math.random() - 0.5) * 700;
|
1336 |
+
const width = 12 + Math.random() * 25;
|
1337 |
+
const height = 8 + Math.random() * 35;
|
1338 |
+
const depth = 12 + Math.random() * 25;
|
1339 |
+
|
1340 |
+
const buildingGeometry = new THREE.BoxGeometry(width, height, depth);
|
1341 |
+
const building = new THREE.Mesh(buildingGeometry, buildingMaterial);
|
1342 |
+
building.position.set(x, height / 2, z);
|
1343 |
+
building.castShadow = true;
|
1344 |
+
scene.add(building);
|
1345 |
+
|
1346 |
+
world.buildings.push({ mesh: building });
|
1347 |
+
}
|
1348 |
+
}
|
1349 |
+
|
1350 |
+
function createDynamicEnvironment() {
|
1351 |
+
// Create exploration targets
|
1352 |
+
world.targets = [];
|
1353 |
+
for (let i = 0; i < 8; i++) {
|
1354 |
+
const target = {
|
1355 |
+
position: new THREE.Vector3(
|
1356 |
+
(Math.random() - 0.5) * 600,
|
1357 |
+
5,
|
1358 |
+
(Math.random() - 0.5) * 600
|
1359 |
+
),
|
1360 |
+
discovered: false
|
1361 |
+
};
|
1362 |
+
|
1363 |
+
// Visual target
|
1364 |
+
const targetGeometry = new THREE.SphereGeometry(3, 8, 6);
|
1365 |
+
const targetMaterial = new THREE.MeshLambertMaterial({
|
1366 |
+
color: 0x00ff00,
|
1367 |
+
transparent: true,
|
1368 |
+
opacity: 0.7
|
1369 |
+
});
|
1370 |
+
target.mesh = new THREE.Mesh(targetGeometry, targetMaterial);
|
1371 |
+
target.mesh.position.copy(target.position);
|
1372 |
+
scene.add(target.mesh);
|
1373 |
+
|
1374 |
+
world.targets.push(target);
|
1375 |
+
}
|
1376 |
+
}
|
1377 |
+
|
1378 |
+
function createInitialPopulation() {
|
1379 |
+
population = [];
|
1380 |
+
|
1381 |
+
for (let i = 0; i < populationSize; i++) {
|
1382 |
+
const angle = (i / populationSize) * Math.PI * 2;
|
1383 |
+
const radius = 40 + Math.random() * 60;
|
1384 |
+
const x = Math.cos(angle) * radius;
|
1385 |
+
const z = Math.sin(angle) * radius;
|
1386 |
+
|
1387 |
+
const car = new EnhancedAICar(x, z);
|
1388 |
+
population.push(car);
|
1389 |
+
scene.add(car.mesh);
|
1390 |
+
}
|
1391 |
+
|
1392 |
+
speciate();
|
1393 |
+
}
|
1394 |
+
|
1395 |
+
function evolvePopulation() {
|
1396 |
+
speciate();
|
1397 |
+
|
1398 |
+
// Advanced evolution with speciation
|
1399 |
+
const totalAdjustedFitness = population.reduce((sum, ind) => sum + ind.adjustedFitness, 0);
|
1400 |
+
const newPopulation = [];
|
1401 |
+
|
1402 |
+
// Determine offspring allocation per species
|
1403 |
+
species.forEach(s => {
|
1404 |
+
if (s.members.length === 0) return;
|
1405 |
+
|
1406 |
+
const speciesFitness = s.members.reduce((sum, ind) => sum + ind.adjustedFitness, 0);
|
1407 |
+
const offspringCount = Math.floor((speciesFitness / totalAdjustedFitness) * populationSize);
|
1408 |
+
|
1409 |
+
// Sort species members by fitness
|
1410 |
+
s.members.sort((a, b) => b.adjustedFitness - a.adjustedFitness);
|
1411 |
+
|
1412 |
+
// Elite selection
|
1413 |
+
const eliteCount = Math.max(1, Math.floor(offspringCount * 0.2));
|
1414 |
+
for (let i = 0; i < eliteCount && i < s.members.length; i++) {
|
1415 |
+
const elite = s.members[i];
|
1416 |
+
const angle = Math.random() * Math.PI * 2;
|
1417 |
+
const radius = 40 + Math.random() * 60;
|
1418 |
+
const newCar = new EnhancedAICar(
|
1419 |
+
Math.cos(angle) * radius,
|
1420 |
+
Math.sin(angle) * radius
|
1421 |
+
);
|
1422 |
+
newCar.brain = elite.brain.copy();
|
1423 |
+
newCar.speciesId = s.id;
|
1424 |
+
newPopulation.push(newCar);
|
1425 |
+
}
|
1426 |
+
|
1427 |
+
// Crossover and mutation
|
1428 |
+
while (newPopulation.filter(car => car.speciesId === s.id).length < offspringCount) {
|
1429 |
+
const parent1 = tournamentSelection(s.members);
|
1430 |
+
const parent2 = tournamentSelection(s.members);
|
1431 |
+
|
1432 |
+
const angle = Math.random() * Math.PI * 2;
|
1433 |
+
const radius = 40 + Math.random() * 60;
|
1434 |
+
const child = new EnhancedAICar(
|
1435 |
+
Math.cos(angle) * radius,
|
1436 |
+
Math.sin(angle) * radius
|
1437 |
+
);
|
1438 |
+
|
1439 |
+
if (Math.random() < 0.7) {
|
1440 |
+
child.brain = parent1.brain.crossover(parent2.brain);
|
1441 |
+
} else {
|
1442 |
+
child.brain = parent1.brain.copy();
|
1443 |
+
}
|
1444 |
+
|
1445 |
+
// Adaptive mutation
|
1446 |
+
const mutationRate = 0.05 + (s.staleness * 0.01);
|
1447 |
+
child.brain.mutate(mutationRate, Math.random() < 0.1);
|
1448 |
+
|
1449 |
+
child.speciesId = s.id;
|
1450 |
+
newPopulation.push(child);
|
1451 |
+
}
|
1452 |
+
});
|
1453 |
+
|
1454 |
+
// Fill any remaining slots
|
1455 |
+
while (newPopulation.length < populationSize) {
|
1456 |
+
const randomSpecies = species[Math.floor(Math.random() * species.length)];
|
1457 |
+
if (randomSpecies.members.length > 0) {
|
1458 |
+
const parent = randomSpecies.members[0];
|
1459 |
+
const angle = Math.random() * Math.PI * 2;
|
1460 |
+
const radius = 40 + Math.random() * 60;
|
1461 |
+
const child = new EnhancedAICar(
|
1462 |
+
Math.cos(angle) * radius,
|
1463 |
+
Math.sin(angle) * radius
|
1464 |
+
);
|
1465 |
+
child.brain = parent.brain.copy();
|
1466 |
+
child.brain.mutate(0.3, true); // High mutation for diversity
|
1467 |
+
child.speciesId = parent.speciesId;
|
1468 |
+
newPopulation.push(child);
|
1469 |
+
}
|
1470 |
+
}
|
1471 |
+
|
1472 |
+
// Clean up old population
|
1473 |
+
population.forEach(car => car.destroy());
|
1474 |
+
|
1475 |
+
// Replace population
|
1476 |
+
population = newPopulation;
|
1477 |
+
population.forEach(car => scene.add(car.mesh));
|
1478 |
+
|
1479 |
+
// Update epoch
|
1480 |
+
epoch++;
|
1481 |
+
timeLeft = epochTime;
|
1482 |
+
bestFitness = Math.max(bestFitness, ...population.map(car => car.rawFitness));
|
1483 |
+
crashCount = 0;
|
1484 |
+
|
1485 |
+
console.log(`Epoch ${epoch}: ${species.length} species, best fitness: ${bestFitness.toFixed(1)}`);
|
1486 |
+
}
|
1487 |
+
|
1488 |
+
function tournamentSelection(individuals, tournamentSize = 3) {
|
1489 |
+
let best = null;
|
1490 |
+
let bestFitness = -1;
|
1491 |
+
|
1492 |
+
for (let i = 0; i < tournamentSize; i++) {
|
1493 |
+
const candidate = individuals[Math.floor(Math.random() * individuals.length)];
|
1494 |
+
if (candidate.adjustedFitness > bestFitness) {
|
1495 |
+
best = candidate;
|
1496 |
+
bestFitness = candidate.adjustedFitness;
|
1497 |
+
}
|
1498 |
+
}
|
1499 |
+
|
1500 |
+
return best;
|
1501 |
+
}
|
1502 |
+
|
1503 |
+
function animate() {
|
1504 |
+
requestAnimationFrame(animate);
|
1505 |
+
|
1506 |
+
if (!paused) {
|
1507 |
+
const deltaTime = Math.min(clock.getDelta() * speedMultiplier, 0.1);
|
1508 |
+
|
1509 |
+
// Update timer
|
1510 |
+
timeLeft -= deltaTime;
|
1511 |
+
if (timeLeft <= 0) {
|
1512 |
+
evolvePopulation();
|
1513 |
+
}
|
1514 |
+
|
1515 |
+
// Update population
|
1516 |
+
updatePopulation(deltaTime);
|
1517 |
+
updateCamera();
|
1518 |
+
updateUI();
|
1519 |
+
updateDynamicEnvironment(deltaTime);
|
1520 |
+
}
|
1521 |
+
|
1522 |
+
renderer.render(scene, camera);
|
1523 |
+
}
|
1524 |
+
|
1525 |
+
function updatePopulation(deltaTime) {
|
1526 |
+
let stats = {
|
1527 |
+
alive: 0,
|
1528 |
+
leaders: 0,
|
1529 |
+
followers: 0,
|
1530 |
+
explorers: 0,
|
1531 |
+
scouts: 0,
|
1532 |
+
totalVelocity: 0,
|
1533 |
+
totalCooperation: 0,
|
1534 |
+
totalExploration: 0,
|
1535 |
+
totalDecisionQuality: 0,
|
1536 |
+
totalNeuralComplexity: 0,
|
1537 |
+
maxGroupSize: 0
|
1538 |
+
};
|
1539 |
+
|
1540 |
+
population.forEach(car => {
|
1541 |
+
car.update(deltaTime);
|
1542 |
+
|
1543 |
+
if (!car.crashed) {
|
1544 |
+
stats.alive++;
|
1545 |
+
stats.totalVelocity += car.velocity.length();
|
1546 |
+
stats.totalDecisionQuality += car.decisionQuality;
|
1547 |
+
stats.totalNeuralComplexity += car.brain.getComplexity();
|
1548 |
+
stats.maxGroupSize = Math.max(stats.maxGroupSize, car.neighbors.length + 1);
|
1549 |
+
|
1550 |
+
switch (car.role) {
|
1551 |
+
case 'leader': stats.leaders++; break;
|
1552 |
+
case 'follower': stats.followers++; break;
|
1553 |
+
case 'explorer': stats.explorers++; break;
|
1554 |
+
case 'scout': stats.scouts++; break;
|
1555 |
+
}
|
1556 |
+
|
1557 |
+
stats.totalCooperation += car.cooperationScore;
|
1558 |
+
stats.totalExploration += car.explorationBonus;
|
1559 |
+
}
|
1560 |
+
});
|
1561 |
+
|
1562 |
+
// Store stats for UI
|
1563 |
+
window.populationStats = stats;
|
1564 |
+
}
|
1565 |
+
|
1566 |
+
function updateCamera() {
|
1567 |
+
if (cameraMode === 'follow') {
|
1568 |
+
// Follow the best performing car or largest flock
|
1569 |
+
let target = population.reduce((best, car) => {
|
1570 |
+
if (car.crashed) return best;
|
1571 |
+
return !best || car.rawFitness > best.rawFitness ? car : best;
|
1572 |
+
}, null);
|
1573 |
+
|
1574 |
+
if (target) {
|
1575 |
+
const targetPos = target.mesh.position.clone();
|
1576 |
+
targetPos.y += 50;
|
1577 |
+
targetPos.add(target.velocity.clone().normalize().multiplyScalar(30));
|
1578 |
+
|
1579 |
+
camera.position.lerp(targetPos, 0.02);
|
1580 |
+
camera.lookAt(target.mesh.position);
|
1581 |
+
}
|
1582 |
+
} else {
|
1583 |
+
camera.position.lerp(new THREE.Vector3(0, 200, 200), 0.02);
|
1584 |
+
camera.lookAt(0, 0, 0);
|
1585 |
+
}
|
1586 |
+
}
|
1587 |
+
|
1588 |
+
function updateUI() {
|
1589 |
+
const stats = window.populationStats || {};
|
1590 |
+
|
1591 |
+
// Main UI
|
1592 |
+
document.getElementById('epoch').textContent = epoch;
|
1593 |
+
document.getElementById('epochTime').textContent = Math.ceil(timeLeft);
|
1594 |
+
document.getElementById('population').textContent = stats.alive || 0;
|
1595 |
+
document.getElementById('speciesCount').textContent = species.length;
|
1596 |
+
document.getElementById('bestFitness').textContent = Math.round(bestFitness);
|
1597 |
+
document.getElementById('innovationCount').textContent = innovationCounter;
|
1598 |
+
|
1599 |
+
// Progress bar
|
1600 |
+
const progress = ((epochTime - timeLeft) / epochTime) * 100;
|
1601 |
+
document.getElementById('timeProgress').style.width = `${progress}%`;
|
1602 |
+
|
1603 |
+
// AI Stats
|
1604 |
+
if (stats.alive > 0) {
|
1605 |
+
document.getElementById('avgIQ').textContent = Math.round(stats.totalDecisionQuality / stats.alive);
|
1606 |
+
document.getElementById('neuralComplexity').textContent = Math.round(stats.totalNeuralComplexity / stats.alive);
|
1607 |
+
document.getElementById('decisionQuality').textContent = Math.round(stats.totalDecisionQuality / stats.alive);
|
1608 |
+
document.getElementById('avgCoordination').textContent = Math.round((stats.totalCooperation / stats.alive) * 10);
|
1609 |
+
}
|
1610 |
+
|
1611 |
+
// Flocking stats
|
1612 |
+
document.getElementById('leaderCount').textContent = stats.leaders || 0;
|
1613 |
+
document.getElementById('followerCount').textContent = stats.followers || 0;
|
1614 |
+
document.getElementById('explorerCount').textContent = stats.explorers || 0;
|
1615 |
+
document.getElementById('soloCount').textContent = stats.scouts || 0;
|
1616 |
+
document.getElementById('largestFlock').textContent = stats.maxGroupSize || 0;
|
1617 |
+
|
1618 |
+
// Generation stats
|
1619 |
+
const totalDistance = population.reduce((sum, car) => sum + car.distanceTraveled, 0);
|
1620 |
+
const totalExploration = population.reduce((sum, car) => sum + car.explorationBonus, 0);
|
1621 |
+
const totalCooperation = population.reduce((sum, car) => sum + car.cooperationScore, 0);
|
1622 |
+
|
1623 |
+
document.getElementById('totalDistance').textContent = Math.round(totalDistance);
|
1624 |
+
document.getElementById('explorationBonus').textContent = Math.round(totalExploration);
|
1625 |
+
document.getElementById('cooperationScore').textContent = Math.round(totalCooperation);
|
1626 |
+
document.getElementById('crashCount').textContent = crashCount;
|
1627 |
+
|
1628 |
+
// Top performers
|
1629 |
+
updateTopPerformers();
|
1630 |
+
}
|
1631 |
+
|
1632 |
+
function updateTopPerformers() {
|
1633 |
+
const sorted = [...population]
|
1634 |
+
.filter(car => !car.crashed)
|
1635 |
+
.sort((a, b) => b.rawFitness - a.rawFitness)
|
1636 |
+
.slice(0, 5);
|
1637 |
+
|
1638 |
+
const topPerformersDiv = document.getElementById('topPerformers');
|
1639 |
+
topPerformersDiv.innerHTML = '';
|
1640 |
+
|
1641 |
+
sorted.forEach((car, i) => {
|
1642 |
+
const div = document.createElement('div');
|
1643 |
+
const roleIcon = {
|
1644 |
+
leader: 'π',
|
1645 |
+
explorer: 'π',
|
1646 |
+
follower: 'π€',
|
1647 |
+
scout: 'ποΈ'
|
1648 |
+
}[car.role] || 'π';
|
1649 |
+
|
1650 |
+
div.innerHTML = `${i + 1}. ${roleIcon} S${car.speciesId} | IQ:${Math.round(car.decisionQuality)} | F:${Math.round(car.rawFitness)}`;
|
1651 |
+
div.className = `species-${car.speciesId % 5}`;
|
1652 |
+
topPerformersDiv.appendChild(div);
|
1653 |
+
});
|
1654 |
+
}
|
1655 |
+
|
1656 |
+
function updateDynamicEnvironment(deltaTime) {
|
1657 |
+
// Update targets
|
1658 |
+
world.targets.forEach(target => {
|
1659 |
+
// Pulsing animation
|
1660 |
+
target.mesh.scale.setScalar(1 + Math.sin(Date.now() * 0.005) * 0.1);
|
1661 |
+
|
1662 |
+
// Check if discovered
|
1663 |
+
population.forEach(car => {
|
1664 |
+
if (!car.crashed && target.mesh.position.distanceTo(car.mesh.position) < 10) {
|
1665 |
+
if (!target.discovered) {
|
1666 |
+
target.discovered = true;
|
1667 |
+
car.explorationBonus += 50;
|
1668 |
+
target.mesh.material.color.setHex(0xffff00);
|
1669 |
+
}
|
1670 |
+
}
|
1671 |
+
});
|
1672 |
+
});
|
1673 |
+
}
|
1674 |
+
|
1675 |
+
function setupEventListeners() {
|
1676 |
+
document.getElementById('pauseBtn').addEventListener('click', togglePause);
|
1677 |
+
document.getElementById('resetBtn').addEventListener('click', resetSimulation);
|
1678 |
+
document.getElementById('speedBtn').addEventListener('click', toggleSpeed);
|
1679 |
+
document.getElementById('viewBtn').addEventListener('click', toggleView);
|
1680 |
+
document.getElementById('flockBtn').addEventListener('click', toggleFlockLines);
|
1681 |
+
document.getElementById('adaptiveBtn').addEventListener('click', toggleAdaptive);
|
1682 |
+
document.getElementById('challengeBtn').addEventListener('click', toggleChallenge);
|
1683 |
+
}
|
1684 |
+
|
1685 |
+
function togglePause() {
|
1686 |
+
paused = !paused;
|
1687 |
+
document.getElementById('pauseBtn').textContent = paused ? 'Resume' : 'Pause';
|
1688 |
+
if (!paused) clock.start();
|
1689 |
+
}
|
1690 |
+
|
1691 |
+
function resetSimulation() {
|
1692 |
+
epoch = 1;
|
1693 |
+
timeLeft = epochTime;
|
1694 |
+
bestFitness = 0;
|
1695 |
+
crashCount = 0;
|
1696 |
+
innovationCounter = 0;
|
1697 |
+
|
1698 |
+
population.forEach(car => car.destroy());
|
1699 |
+
createInitialPopulation();
|
1700 |
+
}
|
1701 |
+
|
1702 |
+
function toggleSpeed() {
|
1703 |
+
speedMultiplier = speedMultiplier === 1 ? 2 : speedMultiplier === 2 ? 5 : 1;
|
1704 |
+
document.getElementById('speedBtn').textContent = `Speed: ${speedMultiplier}x`;
|
1705 |
+
}
|
1706 |
+
|
1707 |
+
function toggleView() {
|
1708 |
+
cameraMode = cameraMode === 'follow' ? 'overview' : 'follow';
|
1709 |
+
document.getElementById('viewBtn').textContent = `View: ${cameraMode === 'follow' ? 'Follow' : 'Overview'}`;
|
1710 |
+
}
|
1711 |
+
|
1712 |
+
function toggleFlockLines() {
|
1713 |
+
showFlockLines = !showFlockLines;
|
1714 |
+
document.getElementById('flockBtn').textContent = `Flocks: ${showFlockLines ? 'ON' : 'OFF'}`;
|
1715 |
+
}
|
1716 |
+
|
1717 |
+
function toggleAdaptive() {
|
1718 |
+
adaptiveEnvironment = !adaptiveEnvironment;
|
1719 |
+
document.getElementById('adaptiveBtn').textContent = `Adaptive: ${adaptiveEnvironment ? 'ON' : 'OFF'}`;
|
1720 |
+
}
|
1721 |
+
|
1722 |
+
function toggleChallenge() {
|
1723 |
+
const levels = ['normal', 'hard', 'extreme'];
|
1724 |
+
const currentIndex = levels.indexOf(challengeLevel);
|
1725 |
+
challengeLevel = levels[(currentIndex + 1) % levels.length];
|
1726 |
+
document.getElementById('challengeBtn').textContent = `Challenge: ${challengeLevel}`;
|
1727 |
+
}
|
1728 |
+
|
1729 |
+
function onWindowResize() {
|
1730 |
+
camera.aspect = window.innerWidth / window.innerHeight;
|
1731 |
+
camera.updateProjectionMatrix();
|
1732 |
+
renderer.setSize(window.innerWidth, window.innerHeight);
|
1733 |
+
}
|
1734 |
+
|
1735 |
+
init();
|
1736 |
+
</script>
|
1737 |
+
</body>
|
1738 |
+
</html>
|