|
|
|
|
|
|
|
__all__ = ['load_dataset', 'rand', 'Tunables', 'T2SEmbedding', 'Encoder', 'TSARTransformer', 'make_model'] |
|
|
|
|
|
import dataclasses |
|
import random |
|
import math |
|
import itertools |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.profiler import record_function |
|
|
|
from huggingface_hub import hf_hub_download |
|
from fastcore.basics import store_attr |
|
from fastprogress import progress_bar |
|
|
|
from pathlib import Path |
|
|
|
|
|
from whisperspeech.modules import * |
|
from whisperspeech import languages |
|
|
|
|
|
import re |
|
|
|
class CharTokenizer: |
|
"""Trivial tokenizer – just use UTF-8 bytes""" |
|
eot = 0 |
|
|
|
def encode(self, txt): |
|
return list(bytes(txt.strip(), 'utf-8')) |
|
|
|
def decode(self, tokens): |
|
return bytes(tokens).decode('utf-8') |
|
|
|
def tokenizer(ikey, okey, length): |
|
"""Tokenizes a transcript""" |
|
tok = CharTokenizer() |
|
def _tokenizer(samples): |
|
for s in samples: |
|
toks = torch.tensor(tok.encode(s[ikey])) |
|
s[okey] = F.pad(toks, (0, length - toks.shape[-1]), value=tok.eot) |
|
yield s |
|
return _tokenizer |
|
|
|
def ar_padder(ikey, okey, length, pad_token): |
|
"""Pads the tokens for autoregresive training""" |
|
import numpy as np |
|
|
|
def _ar_padder(samples): |
|
for s in samples: |
|
toks = s[ikey] |
|
if isinstance(toks, (list, np.ndarray)): toks = torch.tensor(toks) |
|
toks = toks.to(torch.long) |
|
s['in_' +okey] = F.pad(toks, (1, length - toks.shape[-1] - 1), value=pad_token) |
|
s['out_'+okey] = F.pad(toks, (0, length - toks.shape[-1]), value=pad_token) |
|
yield s |
|
return _ar_padder |
|
|
|
def char_per_seconder(txt_key, stoks_key, cps_key, stoks_per_second=25): |
|
"""Adds the characters per second metric to the input data""" |
|
def _char_per_seconder(samples): |
|
for s in samples: |
|
secs = s[stoks_key].shape[-1] / stoks_per_second |
|
s[cps_key] = len(s[txt_key]) / secs |
|
yield s |
|
return _char_per_seconder |
|
|
|
|
|
def load_dataset( |
|
txt_shard_spec:str, |
|
stoks_shard_dir:str, |
|
samples:int, |
|
txt_kind:str='small.en-txt', |
|
vq_codes:int=4096, |
|
language:str='en', |
|
weight:float=1, |
|
validation:bool=False, |
|
exclude_files:str=None, |
|
): |
|
import webdataset as wds |
|
from whisperspeech import utils |
|
|
|
shards = utils.shard_glob(txt_shard_spec) |
|
excludes = {x for file in exclude_files.split() for x in utils.readlines(file)} if exclude_files else set() |
|
|
|
language = languages.to_id(language) |
|
|
|
def set_language(x): |
|
x['language'] = language |
|
return x |
|
|
|
same_on_all_nodes = lambda urls: urls |
|
ds = wds.WebDataset(shards, resampled=not validation, nodesplitter=same_on_all_nodes).compose( |
|
wds.decode(), |
|
utils.merge_in(utils.derived_dataset('eqvad-stoks', base=txt_kind, suffix='', dir=stoks_shard_dir)), |
|
|
|
wds.select(lambda s: s['__key__'] not in excludes and s['stoks.npy'].shape[-1] > 12), |
|
tokenizer('txt', 'ttoks', length=550), |
|
ar_padder('stoks.npy', 'stoks', length=750, pad_token=vq_codes-1), |
|
ar_padder('ttoks', 'ttoks', length=550, pad_token=CharTokenizer.eot), |
|
char_per_seconder('txt', 'stoks.npy', 'cps', stoks_per_second=25), |
|
wds.map(set_language), |
|
wds.to_tuple('in_ttoks', 'out_ttoks', 'language', 'cps', 'in_stoks', 'out_stoks'), |
|
wds.shuffle(20000, initial=20000), |
|
wds.batched(64) |
|
) |
|
if validation: |
|
ds = ds.slice(samples // 64) |
|
ds.total_samples = samples |
|
ds.stoks_len = 750 |
|
ds.stoks_codes = vq_codes |
|
ds.ttoks_len = 550 |
|
ds.weight = weight |
|
|
|
return ds |
|
|
|
|
|
def rand(start, end): |
|
return random.random() * (end - start) + start |
|
|
|
@dataclasses.dataclass |
|
class Tunables: |
|
init_std :float = 1 |
|
embeddings_std :float = .01 |
|
embeddings_lr_scale: float = 5 |
|
embedding_projector_lr_scale: float = 2.5 |
|
output_mult :float = .35 |
|
query_mult :float = 1 |
|
encoder_depth_ratio :float = 0.25 |
|
eot_dropout_p :float = .5 |
|
cps_input: bool = True |
|
cps_bins: int = 32 |
|
|
|
lr0 :float = 1.5e-3 |
|
clip_gradient_norm :float = .2 |
|
weight_decay :float = 1e-1 |
|
warmup_steps :float = 4000 |
|
|
|
random :bool = False |
|
|
|
def __post_init__(self): |
|
|
|
if self.random: |
|
self.init_std = 10**rand(-1,1) |
|
self.embeddings_std = 10**rand(-3,-.7) |
|
self.embeddings_lr_scale = rand(2,6) |
|
self.output_mult = rand(0.25,0.65) |
|
self.query_mult = 2**rand(-2,3) |
|
self.encoder_depth_ratio = 0.25 |
|
|
|
self.lr0 = rand(1,5)*1e-3 |
|
self.clip_gradient_norm = 10**rand(-3,0) |
|
self.warmup_steps = 100*(10**rand(1,1.85)) |
|
|
|
|
|
class T2SEmbedding(nn.Module): |
|
def __init__(self, length=1500, codes=1024, width=384, pos_embs=None, stoks_width=384): |
|
super().__init__() |
|
self.embedding = FlexEmbeddings(codes, width, special_codes=1, frozen_width=stoks_width) |
|
if pos_embs is None: pos_embs = sinusoids(length, width) |
|
self.register_buffer("positional_embedding", pos_embs) |
|
|
|
def forward(self, Stoks, xenc, cps=None, offset=0): |
|
Sembs = self.embedding(Stoks) |
|
xin = (Sembs + self.positional_embedding[offset : offset + Sembs.shape[1]]).to(xenc.dtype) |
|
if cps is not None: xin = xin + cps |
|
return xin, offset |
|
|
|
|
|
class Encoder(nn.Module): |
|
def __init__(self, depth=6, width=384, n_head=6, length=1500, codes=1024, emb_width=384, ffn_mult=4, pos_embs=None, tunables=Tunables()): |
|
super().__init__() |
|
self.emb_width = emb_width |
|
|
|
self.embedding = FlexEmbeddings(codes, width, frozen_width=emb_width) |
|
|
|
if pos_embs is None: pos_embs = sinusoids(length, width) |
|
self.register_buffer("positional_embedding", pos_embs) |
|
|
|
self.layers = nn.ModuleList([ |
|
ResidualAttentionBlock(width, n_head, |
|
qk_scale=tunables.query_mult*8/math.sqrt(width/n_head), ffn_mult=ffn_mult) for _ in range(depth) |
|
]) |
|
|
|
self.ln_post = LayerNorm(width) |
|
|
|
mask = torch.empty(length, length).fill_(-torch.inf).triu_(1) |
|
self.register_buffer("mask", mask, persistent=False) |
|
|
|
def forward(self, Stoks, positions, lang_emb=None): |
|
xin = self.embedding(Stoks) |
|
|
|
if lang_emb is not None: xin += lang_emb |
|
|
|
|
|
x = (xin + |
|
self.positional_embedding[positions]).to(xin.dtype) |
|
|
|
for l in self.layers: x = l(x, positions, causal=False, mask=self.mask) |
|
|
|
return self.ln_post(x) |
|
|
|
|
|
class TSARTransformer(nn.Module): |
|
def __init__(self, depth=6, n_head=6, head_width=64, ffn_mult=4, |
|
ttoks_len=200, ttoks_codes=256, ttoks_width=None, |
|
stoks_len=1500, stoks_codes=1024, stoks_width=None, |
|
tunables=Tunables()): |
|
super().__init__() |
|
store_attr("depth,n_head,head_width,ffn_mult,stoks_width,ttoks_width,ttoks_len,stoks_len,ttoks_codes,stoks_codes") |
|
|
|
width = n_head * head_width |
|
self.width = width |
|
self.base_width = 3 * head_width |
|
self.tunables = tunables |
|
if self.stoks_width is None: self.stoks_width = self.width |
|
if self.ttoks_width is None: self.ttoks_width = self.width |
|
|
|
self.lang_embeddings = nn.Embedding(len(languages.languages), width) |
|
if tunables.cps_input: |
|
self.cps_embeddings = nn.Embedding(tunables.cps_bins, self.width) |
|
else: |
|
self.cps_embeddings = None |
|
|
|
encoder_depth = int(depth * 2 * tunables.encoder_depth_ratio) |
|
decoder_depth = depth * 2 - encoder_depth |
|
tformer_args = dict(width=width, n_head=n_head, ffn_mult=ffn_mult, tunables=tunables) |
|
self.encoder = Encoder(length=ttoks_len, codes=ttoks_codes, emb_width=self.ttoks_width, depth=encoder_depth, **tformer_args) |
|
self.embeddings = T2SEmbedding(length=stoks_len, codes=stoks_codes, width=width, stoks_width=self.stoks_width) |
|
|
|
self.decoder = BaseDecoder( |
|
length=stoks_len, |
|
depth=decoder_depth, |
|
qk_scale=tunables.query_mult*8/math.sqrt(width/n_head), |
|
width=width, n_head=n_head, ffn_mult=ffn_mult, |
|
) |
|
self.tokenizer = None |
|
|
|
self.apply(self.init_transformer) |
|
|
|
def load_frozen_semantic_embeddings(self, vqmodel): |
|
self.embeddings.embedding.set_frozen_embeddings(vqmodel.rq.layers[0]._codebook.embed[0]) |
|
|
|
def setup(self, device): |
|
pass |
|
|
|
def init_transformer(self, m): |
|
if isinstance(m, LinearHead): |
|
m.no_weight_decay = True |
|
torch.nn.init.constant_(m.weight, 0) |
|
elif isinstance(m, QueryHead): |
|
m.lr_scale = 1/(m.weight.shape[1] / self.base_width) |
|
torch.nn.init.constant_(m.weight, 0) |
|
elif isinstance(m, nn.Embedding): |
|
m.no_weight_decay = True |
|
m.lr_scale = self.tunables.embeddings_lr_scale |
|
std = self.tunables.embeddings_std |
|
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std) |
|
elif isinstance(m, EmbeddingProjector): |
|
m.lr_scale = self.tunables.embedding_projector_lr_scale |
|
std = self.tunables.init_std |
|
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std) |
|
elif isinstance(m, nn.Linear): |
|
m.lr_scale = 1/(m.weight.shape[1] / self.base_width) |
|
std = self.tunables.init_std / m.weight.shape[1] |
|
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std) |
|
if m.bias is not None: |
|
torch.nn.init.trunc_normal_(m.bias, std=std, a=-3*std, b=3*std) |
|
elif isinstance(m, nn.LayerNorm): |
|
m.no_weight_decay = True |
|
torch.nn.init.constant_(m.bias, 0) |
|
torch.nn.init.constant_(m.weight, 1) |
|
|
|
def _embed_cps(self, cpss): |
|
if self.cps_embeddings is None: return None |
|
|
|
cps_bin = (cpss / 20 * self.tunables.cps_bins).to(torch.long) |
|
cps_bin[cps_bin >= self.tunables.cps_bins] = self.tunables.cps_bins-1 |
|
return self.cps_embeddings(cps_bin).unsqueeze(1) |
|
|
|
def run_encoder(self, in_ttoks, languages, cpss): |
|
if len(languages.shape) != 3: lang_embs = self.lang_embeddings(languages) |
|
else: lang_embs = languages |
|
if len(lang_embs.shape) == 2: lang_embs = lang_embs.unsqueeze(1) |
|
|
|
cps_emb = self._embed_cps(cpss) |
|
|
|
with record_function("encoder"): |
|
positions = torch.arange(0, in_ttoks.shape[1], device=in_ttoks.device) |
|
xenc = self.encoder(in_ttoks.to(torch.long), positions, lang_emb=lang_embs) |
|
|
|
return xenc, positions, cps_emb |
|
|
|
def forward(self, in_ttoks, out_ttoks, languages, cpss, in_stoks, in_stoks_positions, out_stoks=None, loss=True, offset=None, xenc=None, xenc_positions=None, cps_emb=None): |
|
if xenc is None: |
|
xenc, cps_emb = self.run_encoder(in_ttoks, languages, cpss) |
|
|
|
with record_function("decoder"): |
|
x = (self.embeddings.embedding(in_stoks) + |
|
self.embeddings.positional_embedding[in_stoks_positions] + |
|
cps_emb).to(xenc[0].dtype) |
|
x = self.decoder(x, in_stoks_positions, xenc, xenc_positions) |
|
logits = self.embeddings.embedding.unembed(x) |
|
logits = logits * self.tunables.output_mult / (self.width / self.base_width) |
|
|
|
if loss is not None: |
|
enc_logits = self.encoder.embedding.unembed(xenc[0]) |
|
enc_logits = enc_logits * self.tunables.output_mult / (self.width / self.base_width) |
|
with record_function("loss"): |
|
loss = F.cross_entropy(logits.transpose(-1,-2), out_stoks) |
|
if self.training: |
|
loss += 0.1 * F.cross_entropy(enc_logits.transpose(-1,-2), out_ttoks) |
|
|
|
return logits, loss |
|
|
|
|
|
|
|
|
|
@classmethod |
|
def load_model(cls, ref="collabora/whisperspeech:t2s-small-en+pl.model", |
|
repo_id=None, filename=None, local_filename=None): |
|
if repo_id is None and filename is None and local_filename is None: |
|
if ":" in ref: |
|
repo_id, filename = ref.split(":", 1) |
|
else: |
|
local_filename = ref |
|
if not local_filename: |
|
local_filename = hf_hub_download(repo_id=repo_id, filename=filename) |
|
spec = torch.load(local_filename) |
|
model = cls(**spec['config'], tunables=Tunables(**spec['tunables'])) |
|
model.load_state_dict(spec['state_dict']) |
|
model.eval() |
|
return model |
|
|
|
def load_checkpoint(self, local_filename): |
|
spec = torch.load(local_filename, map_location='cpu') |
|
assert 'pytorch-lightning_version' in spec, 'not a valid PyTorch Lightning checkpoint' |
|
state_dict = {k.replace('model.', ''):v |
|
for k,v in spec['state_dict'].items()} |
|
self.load_state_dict(state_dict) |
|
return self |
|
|
|
def save_model(self, fname): |
|
torch.save(dict(config = self.__stored_args__, |
|
tunables = dataclasses.asdict(self.tunables), |
|
state_dict = self.state_dict()), fname) |
|
|
|
def ensure_tokenizer(self): |
|
assert not self.training |
|
if self.tokenizer is None: self.tokenizer = CharTokenizer() |
|
|
|
def switch_dtypes(self, dtype=torch.float16): |
|
self.dtype = dtype |
|
for n,m in self.named_modules(): |
|
|
|
if isinstance(m, (nn.Linear, nn.Embedding)): |
|
m.to(dtype) |
|
|
|
for bn,b in m.named_buffers(recurse=False): |
|
setattr(m,bn,b.to(dtype)) |
|
|
|
def optimize(self, max_batch_size=1, dtype=torch.float16, torch_compile=True): |
|
for emb in [self.embeddings.embedding, self.embeddings.embedding]: |
|
emb.convert_for_eval() |
|
for l in self.encoder.layers: |
|
l.attn.convert_for_eval() |
|
for l in self.decoder.layers: |
|
l.attn.convert_for_eval() |
|
l.cross_attn.convert_for_eval() |
|
l.setup_kv_cache(max_batch_size, self.stoks_len, self.ttoks_len) |
|
self.switch_dtypes(dtype) |
|
if torch_compile: |
|
self.generate_next = torch.compile(self.generate_next, mode="reduce-overhead", fullgraph=True) |
|
|
|
@property |
|
def device(self): |
|
return next(self.parameters()).device |
|
|
|
|
|
def multinomial_sample_one_no_sync(self, probs_sort): |
|
q = torch.empty_like(probs_sort).exponential_(1) |
|
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int) |
|
|
|
def logits_to_probs(self, logits, T=1.0, top_k=None): |
|
logits = logits / max(T, 1e-5) |
|
|
|
logits[self.embeddings.embedding.codes:] = -torch.inf |
|
if top_k is not None: |
|
v, _ = torch.topk(logits, min(top_k, logits.size(-1))) |
|
pivot = v.select(-1, -1).unsqueeze(-1) |
|
logits = torch.where(logits < pivot, -float("Inf"), logits) |
|
|
|
probs = torch.nn.functional.softmax(logits, dim=-1) |
|
return probs |
|
|
|
def sample(self, logits, T=1.0, top_k=None): |
|
probs = self.logits_to_probs(logits[0,-1], T, top_k) |
|
idx_next = self.multinomial_sample_one_no_sync(probs) |
|
return idx_next |
|
|
|
def generate_one(self, toks, toks_positions, cps_emb, xenc, xenc_positions, T, top_k): |
|
probs, _ = self(None, None, None, None, toks, toks_positions, loss=None, xenc=xenc, xenc_positions=xenc_positions, cps_emb=cps_emb) |
|
return self.sample(probs, T, top_k) |
|
|
|
def generate_next(self, *args, **kwargs): |
|
return self.generate_one(*args, **kwargs) |
|
|
|
@torch.no_grad() |
|
def prep(self, txt, cps=15, lang="en"): |
|
dev = self.device |
|
ttoks = torch.tensor(self.tokenizer.encode(txt), device=dev) |
|
ttoks = F.pad(ttoks, (0, self.ttoks_len - len(ttoks)), value=self.tokenizer.eot).unsqueeze(0) |
|
cpss = torch.tensor([cps], device=dev) |
|
langs = torch.tensor([languages.to_id(lang)], device=dev) |
|
return ttoks, cpss, langs |
|
|
|
@torch.no_grad() |
|
def generate(self, txt, cps=15, lang="en", N=None, T=0.7, top_k=None, step=None, show_progress_bar=True): |
|
self.ensure_tokenizer() |
|
N = N or self.stoks_len |
|
dev = self.device |
|
ttoks = [] |
|
langs = [] |
|
if isinstance(lang, list): |
|
lang0 = lang[0] |
|
assert isinstance(txt, list), "lang and txt have to be both lists or strings" |
|
for txt, lang in zip(txt, lang): |
|
tt = self.tokenizer.encode(txt) |
|
ttoks += tt |
|
langs += [languages.to_id(lang)] * len(tt) |
|
elif isinstance(lang, torch.Tensor): |
|
langs = lang |
|
ttoks = self.tokenizer.encode(txt) |
|
else: |
|
lang0 = lang |
|
ttoks = self.tokenizer.encode(txt) |
|
langs = torch.tensor([languages.to_id(lang)], device=dev).unsqueeze(0) |
|
ttoks = torch.tensor(ttoks, device=dev) |
|
ttoks = F.pad(ttoks, (1, self.ttoks_len - len(ttoks) - 1), value=self.tokenizer.eot).unsqueeze(0) |
|
cpss = torch.tensor([cps], device=dev) |
|
if not isinstance(langs, torch.Tensor): |
|
langs = torch.tensor(langs, device=dev) |
|
langs = F.pad(langs, (1, self.ttoks_len - len(langs) - 1), value=languages.to_id(lang0)).unsqueeze(0) |
|
it = range(0,N-1) |
|
if show_progress_bar: it = progress_bar(it) |
|
|
|
toks = torch.zeros((1,N), dtype=torch.long, device=dev) |
|
toks[:,0] = self.stoks_codes-1 |
|
toks_positions = torch.arange(N, device=dev) |
|
with record_function("encode"): |
|
xenc, xenc_positions, cps_emb = self.run_encoder(ttoks, langs, cpss) |
|
toks_positions = torch.arange(N+1, device=dev) |
|
|
|
|
|
|
|
with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True): |
|
for i in it: |
|
toks[0,i+1] = self.generate_next(toks[:,i:i+1], toks_positions[i:i+1], cps_emb, xenc, xenc_positions, T, top_k) |
|
if i % 25 == 0 and toks[0,i+1] == self.stoks_codes-1: return toks[0,:i+1] |
|
|
|
|
|
if step is not None: step() |
|
return toks[0,:] |
|
|
|
@torch.no_grad() |
|
def generate_batch(self, txts, N=None, T=1.1, top_k=7, show_progress_bar=True): |
|
self.ensure_tokenizer() |
|
N = self.stoks_len |
|
dev = self.device |
|
ttoks = [] |
|
for txt in txts: |
|
ttoks_ = torch.tensor(self.tokenizer.encode(txt), device=dev) |
|
ttoks_ = F.pad(ttoks_, (0, self.ttoks_len - len(ttoks_)), value=self.tokenizer.eot).unsqueeze(0) |
|
ttoks.append(ttoks_) |
|
ttoks = torch.cat(ttoks, dim=0) |
|
toks = torch.zeros((len(ttoks),N), dtype=torch.long, device=dev) |
|
it = range(N) |
|
if show_progress_bar: it = progress_bar(it) |
|
for i in it: |
|
p, _ = self(ttoks, toks[:,:i], loss=None) |
|
last_p = p[:,-1] |
|
if top_k: |
|
last_p[last_p < torch.topk(last_p, top_k).values[:,-1,None]] = -torch.inf |
|
tok = torch.multinomial((last_p / float(T)).softmax(-1), 1) |
|
toks[:,i] = tok[:,0] |
|
if (toks[:,i] == self.stoks_codes-1).all(): return toks[:,:i] |
|
return toks |
|
|
|
|
|
def _make_model(size:str, tunables:Tunables=Tunables(), dataset=None, **kwargs): |
|
kwargs = dict(stoks_len = dataset.stoks_len, ttoks_len = dataset.ttoks_len, tunables=tunables, **kwargs) |
|
if 'stoks_codes' not in kwargs: kwargs['stoks_codes'] = dataset.stoks_codes |
|
if size == 'micro': |
|
return TSARTransformer(depth=2, n_head=3, ffn_mult=1, **kwargs) |
|
if size == 'tiny': |
|
return TSARTransformer(depth=4, n_head=6, **kwargs) |
|
if size == 'base': |
|
return TSARTransformer(depth=6, n_head=8, **kwargs) |
|
if size == 'small': |
|
return TSARTransformer(depth=12, n_head=12, **kwargs) |
|
if size == 'small+': |
|
return TSARTransformer(depth=12, n_head=16, **kwargs) |
|
if size == 'medium': |
|
return TSARTransformer(depth=24, n_head=16, **kwargs) |
|
|
|
def make_model(size:str, frozen_embeddings_model:str=None, tunables:Tunables=Tunables(), dataset:torch.utils.data.Dataset=None): |
|
from whisperspeech import vq_stoks |
|
|
|
if frozen_embeddings_model: |
|
vqmodel = vq_stoks.RQBottleneckTransformer.load_model(frozen_embeddings_model) |
|
model = _make_model(size, tunables, dataset, stoks_codes=vqmodel.vq_codes+1, stoks_width=vqmodel.rq.layers[0]._codebook.embed[0].shape[-1]) |
|
model.load_frozen_semantic_embeddings(vqmodel) |
|
else: |
|
model = _make_model(size, tunables, dataset, mode=mode) |
|
return model |
|
|