|
import spaces |
|
import tempfile |
|
import wave |
|
import gradio as gr |
|
import os |
|
import re |
|
import torch |
|
import soundfile as sf |
|
import numpy as np |
|
import torch.nn.functional as F |
|
from whisperspeech.pipeline import Pipeline |
|
from whisperspeech.languages import LANGUAGES |
|
from whisperspeech.pipeline import Pipeline |
|
from whisperspeech.utils import resampler |
|
|
|
title = """# 🙋🏻♂️ Welcome to🌟Collabora🌬️💬📝WhisperSpeech |
|
|
|
You can use this ZeroGPU Space to test out the current model [🌬️💬📝collabora/whisperspeech](https://huggingface.co/collabora/whisperspeech). 🌬️💬📝collabora/whisperspeech is An Open Source text-to-speech system built by inverting Whisper. Install it and use your command line interface locally with `pip install whisperspeech`. It's like Stable Diffusion but for speech – both powerful and easily customizable : so you can use it programmatically in your own pipelines! [Contribute to whisperspeech here](https://github.com/collabora/WhisperSpeech) |
|
You can also use 🌬️💬📝WhisperSpeech by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/laion-whisper?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> |
|
|
|
We're **celebrating the release of the whisperspeech** at [the LAION community, if you love open source ai learn more here : https://laion.ai/](https://laion.ai/) big thanks to the folks at huggingface for the community grant 🤗 |
|
|
|
### How to Use |
|
Input text with the language identifiers provided to create a multilingual speech. Optionally you can add an audiosample to make a voice print. Scroll down and try the api <3 Gradio. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
def parse_multilingual_text(input_text): |
|
pattern = r"<(\w+)>\s(.*?)\s(?=<\w+>|$)" |
|
segments = re.findall(pattern, input_text) |
|
return [(lang, text.strip()) for lang, text in segments if lang in LANGUAGES.keys()] |
|
|
|
@spaces.GPU |
|
def generate_segment_audio(text, lang, speaker_url, pipe): |
|
stoks = pipe.t2s.generate([text], lang=[lang]) |
|
audio_data = pipe.generate(stoks, speaker_url, lang) |
|
resample_audio = resampler(newsr=24000) |
|
audio_data_resampled = next(resample_audio([{'sample_rate': 24000, 'samples': audio_data.cpu()}]))['samples_24k'] |
|
audio_np = audio_data_resampled.cpu().numpy() |
|
return audio_np |
|
|
|
|
|
def concatenate_audio_segments(segments): |
|
concatenated_audio = np.concatenate(segments, axis=0) |
|
concatenated_audio = concatenated_audio / np.max(np.abs(concatenated_audio)) |
|
return np.asarray(concatenated_audio, dtype=np.float32) |
|
|
|
@spaces.GPU |
|
def whisper_speech_demo(multilingual_text, speaker_audio): |
|
segments = parse_multilingual_text(multilingual_text) |
|
if not segments: |
|
return None, "No valid language segments found. Please use the format: <lang> text" |
|
|
|
pipe = Pipeline() |
|
speaker_url = speaker_audio if speaker_audio is not None else None |
|
audio_segments = [] |
|
|
|
for lang, text in segments: |
|
audio_np = generate_segment_audio(text, lang, speaker_url, pipe) |
|
audio_segments.append(audio_np) |
|
|
|
concatenated_audio = concatenate_audio_segments(audio_segments) |
|
audio_stereo = np.stack((concatenated_audio, concatenated_audio), axis=-1) |
|
audio_stereo = audio_stereo.reshape(-1, 2) |
|
|
|
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file: |
|
sf.write(tmp_file.name, audio_stereo, 24000, format='WAV', subtype='PCM_16') |
|
return tmp_file.name |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(title) |
|
output_audio = gr.Audio(label="Generated Speech") |
|
generate_button = gr.Button("Try 🌟Collabora🌬️💬📝WhisperSpeech") |
|
with gr.Row(): |
|
text_input = gr.Textbox(label="Enter multilingual text", placeholder="e.g., <en> Hello <fr> Bonjour <es> Hola") |
|
speaker_input = gr.Audio(label="Upload or Record Speaker Audio (optional)", sources=["upload", "microphone"]) |
|
with gr.Accordion("Available Languages and Their Tags"): |
|
language_list = "\n".join([f"{lang}: {LANGUAGES[lang]}" for lang in LANGUAGES]) |
|
gr.Markdown(language_list) |
|
generate_button.click(whisper_speech_demo, inputs=[text_input, speaker_input], outputs=output_audio) |
|
|
|
demo.launch() |