Spaces:
Build error
Build error
File size: 18,607 Bytes
e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 cbf77e5 e13b6e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import gradio as gr
from pathlib import Path
import datetime
import re
import os
import shutil
import io
import base64
from collections import defaultdict
from PIL import Image
# Document Generation Libs
from docx import Document
import openpyxl
from pypdf import PdfWriter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, PageBreak, BaseDocTemplate, Frame, PageTemplate
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.pagesizes import letter, A4, landscape
from reportlab.lib.units import inch
from reportlab.pdfbase import pdfmetrics
from reportlab.pdfbase.ttfonts import TTFont
# AI and Media Libs
from openai import AzureOpenAI
import fitz # PyMuPDF
# --- Configuration & Setup ---
CWD = Path.cwd()
OUTPUT_DIR = CWD / "generated_outputs"
PREVIEW_DIR = CWD / "previews"
FONT_DIR = CWD
OUTPUT_DIR.mkdir(exist_ok=True)
PREVIEW_DIR.mkdir(exist_ok=True)
LAYOUTS = {
"A4 Portrait": {"size": A4},
"A4 Landscape": {"size": landscape(A4)},
"Letter Portrait": {"size": letter},
"Letter Landscape": {"size": landscape(letter)},
}
# ๐ง Initialize Azure OpenAI Client
# NOTE: This requires AZURE_OPENAI_ENDPOINT and AZURE_OPENAI_API_KEY in your environment.
try:
client = AzureOpenAI(
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
api_version="2024-05-01-preview",
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
)
AZURE_CLIENT_AVAILABLE = True
except Exception as e:
print("Warning: Azure OpenAI client could not be initialized. Text generation will use dummy data.")
print(f"Error: {e}")
client = None
AZURE_CLIENT_AVAILABLE = False
# ๐ Map UI model names to your actual Azure deployment names.
# YOU MUST CHANGE THESE DEPLOYMENT NAMES to match your Azure setup.
AZURE_DEPLOYMENT_NAMES = {
# Chat / Vision Models
"gpt-4o": "your-gpt-4o-deployment-name",
"gpt-4.1": "your-gpt-4.1-deployment-name",
"gpt-4.1-mini": "your-gpt-4.1-mini-deployment-name",
"gpt-4o-mini": "your-gpt-4o-mini-deployment-name",
"gpt-4o-realtime-preview": "your-gpt-4o-realtime-deployment-name",
# Reasoning Models
"o1-mini": "your-o1-mini-deployment-name",
"o3-mini": "your-o3-mini-deployment-name",
"o4-mini": "your-o4-mini-deployment-name",
# Transcription Models
"gpt-4o-transcribe": "your-gpt-4o-transcribe-deployment",
"gpt-4o-mini-transcribe": "your-gpt-4o-mini-transcribe-deployment",
}
# --- โ๏ธ Document Generation Engines ---
def create_pdf(md_content, font_name, emoji_font, pagesize, num_columns):
"""๐ Builds a beautiful PDF from a Markdown story using ReportLab."""
pdf_buffer = io.BytesIO()
story = markdown_to_story(md_content, font_name, emoji_font)
if num_columns > 1:
doc = BaseDocTemplate(pdf_buffer, pagesize=pagesize, leftMargin=0.5 * inch, rightMargin=0.5 * inch)
frame_width = (doc.width / num_columns) - (num_columns - 1) * 0.1 * inch
frames = [Frame(doc.leftMargin + i * (frame_width + 0.2 * inch), doc.bottomMargin, frame_width, doc.height) for i in range(num_columns)]
doc.addPageTemplates([PageTemplate(id='MultiCol', frames=frames)])
else:
doc = SimpleDocTemplate(pdf_buffer, pagesize=pagesize)
doc.build(story)
pdf_buffer.seek(0)
return pdf_buffer
def create_docx(md_content):
"""๐ Crafts a DOCX document, translating Markdown to Word elements."""
document = Document()
for line in md_content.split('\n'):
if line.startswith('# '): document.add_heading(line[2:], level=1)
elif line.startswith('## '): document.add_heading(line[3:], level=2)
elif line.strip().startswith(('- ', '* ')): document.add_paragraph(line.strip()[2:], style='List Bullet')
else:
p = document.add_paragraph()
parts = re.split(r'(\*\*.*?\*\*)', line)
for part in parts:
if part.startswith('**') and part.endswith('**'): p.add_run(part[2:-2]).bold = True
else: p.add_run(part)
return document
def create_xlsx(md_content):
"""๐ Organizes a Markdown outline into columns in an XLSX file."""
workbook = openpyxl.Workbook(); sheet = workbook.active
sections = re.split(r'\n# ', '\n' + md_content)
if sections and sections[0] == '': sections.pop(0)
column_data = []
for section in sections:
lines = section.split('\n'); header = lines[0]
content = [l.strip() for l in lines[1:] if l.strip()]
column_data.append({'header': header, 'content': content})
for c_idx, col in enumerate(column_data, 1):
sheet.cell(row=1, column=c_idx, value=col['header'])
for r_idx, line_content in enumerate(col['content'], 2):
sheet.cell(row=r_idx, column=c_idx, value=line_content)
return workbook
def markdown_to_story(markdown_text: str, font_name: str, emoji_font: str):
"""๐ Translates Markdown text into a sequence of ReportLab flowables for PDF rendering."""
styles = getSampleStyleSheet()
bold_font = f"{font_name}-Bold" if font_name != "Helvetica" else "Helvetica-Bold"
style_normal = ParagraphStyle('BodyText', fontName=font_name, spaceAfter=6, fontSize=10)
style_h1 = ParagraphStyle('h1', fontName=bold_font, spaceBefore=12, fontSize=24)
story, first_heading = [], True
for line in markdown_text.split('\n'):
content, style = line, style_normal
if line.startswith("# "):
if not first_heading: story.append(PageBreak())
content, style, first_heading = line.lstrip('# '), style_h1, False
formatted_content = re.sub(r'\*\*(.*?)\*\*', r'<b>\1</b>', content)
final_content = apply_emoji_font(formatted_content, emoji_font)
story.append(Paragraph(final_content, style))
return story
# --- ๐ฎ Omni-Model Processing ---
def process_text_input(prompt, model_deployment_name):
"""๐ฌ Sends a text prompt to the Azure OpenAI model and gets a response."""
if not AZURE_CLIENT_AVAILABLE: return "Azure OpenAI client not configured. This is dummy text."
completion = client.chat.completions.create(
model=model_deployment_name,
messages=[{"role": "user", "content": prompt}]
)
return completion.choices[0].message.content
def process_image_input(image_file, prompt, model_deployment_name):
"""๐ผ๏ธ Encodes an image and sends it with a prompt to the Azure OpenAI model."""
if not AZURE_CLIENT_AVAILABLE: return "Azure OpenAI client not configured. This is a dummy image description."
with Image.open(image_file.name) as img:
with io.BytesIO() as output:
img.save(output, format="PNG")
base64_image = base64.b64encode(output.getvalue()).decode("utf-8")
response = client.chat.completions.create(
model=model_deployment_name,
messages=[{"role": "user", "content": [
{"type": "text", "text": prompt},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}
]}]
)
return response.choices[0].message.content
def process_audio_input(audio_file, prompt, chat_model_deployment, transcribe_model_deployment):
"""๐ค Transcribes audio and sends the text with a prompt to the Azure OpenAI model."""
if not AZURE_CLIENT_AVAILABLE: return "Azure OpenAI client not configured. This is a dummy audio summary."
with open(audio_file.name, "rb") as f:
transcription = client.audio.transcriptions.create(
model=transcribe_model_deployment,
file=f
).text
full_prompt = f"{prompt}\n\nAudio Transcription:\n{transcription}"
return process_text_input(full_prompt, chat_model_deployment)
def process_pdf_input(pdf_file, prompt, model_deployment_name, progress):
"""๐ Performs OCR on a PDF by sending pages as images to the AI model."""
if not AZURE_CLIENT_AVAILABLE: return "Azure OpenAI client not configured. This is a dummy PDF summary."
all_extracted_text = []
doc = fitz.open(pdf_file.name)
# Process pages in pairs
for i in progress.tqdm(range(0, len(doc), 2), desc="Performing PDF OCR"):
page_images = []
messages = [{"type": "text", "text": prompt}]
# Get first page of the pair
page1 = doc.load_page(i)
pix1 = page1.get_pixmap(dpi=150)
img_bytes1 = pix1.tobytes("png")
base64_image1 = base64.b64encode(img_bytes1).decode("utf-8")
messages.append({"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image1}"}})
# Get second page if it exists
if i + 1 < len(doc):
page2 = doc.load_page(i + 1)
pix2 = page2.get_pixmap(dpi=150)
img_bytes2 = pix2.tobytes("png")
base64_image2 = base64.b64encode(img_bytes2).decode("utf-8")
messages.append({"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image2}"}})
response = client.chat.completions.create(
model=model_deployment_name,
messages=[{"role": "user", "content": messages}]
)
all_extracted_text.append(response.choices[0].message.content)
return "\n\n".join(all_extracted_text)
# --- ๐ ๏ธ Helpers & Main API ---
def register_local_fonts():
"""โ๏ธ Scans for local .ttf fonts and registers them for PDF creation."""
text_font_names, emoji_font_name = [], None
font_files = list(FONT_DIR.glob("*.ttf"))
for font_path in font_files:
try:
font_name = font_path.stem
pdfmetrics.registerFont(TTFont(font_name, str(font_path)))
pdfmetrics.registerFont(TTFont(f"{font_name}-Bold", str(font_path)))
pdfmetrics.registerFontFamily(font_name, normal=font_name, bold=f"{font_name}-Bold")
if "notocoloremoji-regular" in font_name.lower():
emoji_font_name = font_name
else:
text_font_names.append(font_name)
except Exception as e:
print(f"Could not register font {font_path.name}: {e}")
if not text_font_names: text_font_names.append('Helvetica')
return sorted(text_font_names), emoji_font_name
def apply_emoji_font(text: str, emoji_font_name: str) -> str:
"""๐ Finds emojis and wraps them in special font tags for the PDF."""
if not emoji_font_name: return text
emoji_pattern = re.compile(f"([{re.escape(''.join(map(chr, range(0x1f600, 0x1f650))))}"
f"{re.escape(''.join(map(chr, range(0x1f300, 0x1f5ff))))}]+)")
return emoji_pattern.sub(fr'<font name="{emoji_font_name}">\1</font>', text)
def create_pdf_preview(pdf_path: Path):
"""๐๏ธ Generates a PNG thumbnail for the first page of a PDF."""
preview_path = PREVIEW_DIR / f"{pdf_path.stem}.png"
try:
doc = fitz.open(pdf_path); page = doc.load_page(0); pix = page.get_pixmap()
pix.save(str(preview_path)); doc.close()
return str(preview_path)
except: return None
def generate_outputs_api(omni_files, omni_prompt, chat_model, transcribe_model, output_formats, layouts, fonts, num_columns, page_w_mult, page_h_mult, progress=gr.Progress(track_tqdm=True)):
"""๐ The main entry point that orchestrates the entire multi-modal generation process."""
if not omni_prompt and not omni_files: raise gr.Error("Please provide a prompt or upload at least one file.")
if not output_formats: raise gr.Error("Please select at least one output format.")
chat_deployment = AZURE_DEPLOYMENT_NAMES.get(chat_model)
transcribe_deployment = AZURE_DEPLOYMENT_NAMES.get(transcribe_model)
if not chat_deployment: raise gr.Error(f"Deployment for model '{chat_model}' not found in configuration.")
shutil.rmtree(OUTPUT_DIR, ignore_errors=True); shutil.rmtree(PREVIEW_DIR, ignore_errors=True)
OUTPUT_DIR.mkdir(); PREVIEW_DIR.mkdir()
# --- Step 1: Omni-Model Processing ---
md_content = ""
# Process files first
if omni_files:
# Check for multiple file types
file_paths = [Path(f.name) for f in omni_files]
extensions = {p.suffix.lower() for p in file_paths}
if '.md' in extensions:
md_content = "\n\n".join([p.read_text(encoding='utf-8') for p in file_paths if p.suffix.lower() == '.md'])
elif '.pdf' in extensions:
# For simplicity, we process only the first PDF if multiple are uploaded for OCR
pdf_file = next((f for f in omni_files if Path(f.name).suffix.lower() == '.pdf'), None)
ocr_prompt = omni_prompt if omni_prompt else "Extract all text from the following document pages."
md_content = process_pdf_input(pdf_file, ocr_prompt, chat_deployment, progress)
elif '.png' in extensions or '.jpg' in extensions or '.jpeg' in extensions:
image_file = next((f for f in omni_files if Path(f.name).suffix.lower() in ['.png', '.jpg', '.jpeg']), None)
md_content = process_image_input(image_file, omni_prompt, chat_deployment)
elif '.wav' in extensions or '.mp3' in extensions or '.m4a' in extensions:
if not transcribe_deployment: raise gr.Error(f"Deployment for model '{transcribe_model}' not found.")
audio_file = next((f for f in omni_files if Path(f.name).suffix.lower() in ['.wav', '.mp3', '.m4a']), None)
md_content = process_audio_input(audio_file, omni_prompt, chat_deployment, transcribe_deployment)
# If no files, process text prompt
elif omni_prompt:
md_content = process_text_input(omni_prompt, chat_deployment)
if not md_content: raise gr.Error("Failed to generate source content from the provided input.")
# --- Step 2: Generate Selected Document Formats ---
generated_files = []
for format_choice in progress.tqdm(output_formats, desc="Generating Formats"):
time_str = datetime.datetime.now().strftime('%m-%d-%a_%I%M%p').upper()
if format_choice == "PDF":
for layout_name in layouts:
for font_name in fonts:
pagesize = LAYOUTS[layout_name]["size"]
final_pagesize = (pagesize[0] * page_w_mult, pagesize[1] * page_h_mult)
pdf_buffer = create_pdf(md_content, font_name, EMOJI_FONT_NAME, final_pagesize, num_columns)
filename = f"Document_{time_str}_{layout_name.replace(' ','-')}_{font_name}.pdf"
output_path = OUTPUT_DIR / filename
with open(output_path, "wb") as f: f.write(pdf_buffer.getvalue())
generated_files.append(output_path)
elif format_choice == "DOCX":
docx_doc = create_docx(md_content)
filename = f"Document_{time_str}.docx"
output_path = OUTPUT_DIR / filename
docx_doc.save(output_path); generated_files.append(output_path)
elif format_choice == "XLSX":
xlsx_book = create_xlsx(md_content)
filename = f"Outline_{time_str}.xlsx"
output_path = OUTPUT_DIR / filename
xlsx_book.save(output_path); generated_files.append(output_path)
gallery_previews = [create_pdf_preview(p) for p in generated_files if p.suffix == '.pdf']
final_gallery = [g for g in gallery_previews if g]
return md_content, final_gallery, [str(p) for p in generated_files]
# --- ๐จ Gradio UI Definition ---
AVAILABLE_FONTS, EMOJI_FONT_NAME = register_local_fonts()
with gr.Blocks(theme=gr.themes.Soft(), title="Omni-Model Document Generator") as demo:
gr.Markdown("# ๐ง Omni-Model Document Generator (PDF, DOCX, XLSX)")
gr.Markdown("Provide a prompt, or upload a Markdown, PDF, Image, or Audio file. The AI will process it, and you can generate documents from the result.")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### โ๏ธ Omni-Model Input")
chat_models = ["gpt-4o", "gpt-4.1", "gpt-4.1-mini", "gpt-4o-mini", "o1-mini", "o3-mini", "o4-mini"]
transcribe_models = ["gpt-4o-transcribe", "gpt-4o-mini-transcribe"]
selected_chat_model = gr.Dropdown(choices=chat_models, label="Select Chat/Vision/Reasoning Model", value=chat_models[0])
selected_transcribe_model = gr.Dropdown(choices=transcribe_models, label="Select Transcription Model (for audio)", value=transcribe_models[0])
omni_prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Ask a question, or provide instructions for a file...")
omni_files = gr.File(label="Upload File(s) (Optional)", file_count="multiple", file_types=["image", ".wav", ".mp3", ".md", ".pdf"])
gr.Markdown("### ๐ Output Settings")
output_formats = gr.CheckboxGroup(choices=["PDF", "DOCX", "XLSX"], label="Select Output Formats", value=["PDF"])
with gr.Accordion("PDF Customization", open=True):
num_columns_slider = gr.Slider(label="Text Columns", minimum=1, maximum=4, step=1, value=1)
page_w_mult_slider = gr.Slider(label="Page Width Multiplier", minimum=1, maximum=5, step=1, value=1)
page_h_mult_slider = gr.Slider(label="Page Height Multiplier", minimum=1, maximum=2, step=1, value=1)
selected_layouts = gr.CheckboxGroup(choices=list(LAYOUTS.keys()), label="Base Page Layout", value=["A4 Portrait"])
selected_fonts = gr.CheckboxGroup(choices=AVAILABLE_FONTS, label="Text Font", value=[AVAILABLE_FONTS[0]] if AVAILABLE_FONTS else [])
generate_btn = gr.Button("๐ Generate Documents", variant="primary")
with gr.Column(scale=2):
gr.Markdown("### ๐ค AI Response (Source for Documents)")
ai_response_output = gr.Markdown(label="AI Generated Content")
gr.Markdown("### ๐ผ๏ธ Final Documents")
gallery_output = gr.Gallery(label="PDF Previews", show_label=False, elem_id="gallery", columns=3, height="auto", object_fit="contain")
downloadable_files_output = gr.Files(label="Download Generated Files")
generate_btn.click(fn=generate_outputs_api,
inputs=[omni_files, omni_prompt, selected_chat_model, selected_transcribe_model, output_formats, selected_layouts, selected_fonts, num_columns_slider, page_w_mult_slider, page_h_mult_slider],
outputs=[ai_response_output, gallery_output, downloadable_files_output])
if __name__ == "__main__":
demo.launch()
|