awacke1 commited on
Commit
98a1667
Β·
1 Parent(s): 8a61a98

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -6
app.py CHANGED
@@ -1,14 +1,56 @@
1
- import streamlit as st, pandas as pd, random, plotly.graph_objects as go, plotly.express as px
2
- states, top_n = ["Minnesota", "Florida", "California"], 10
3
- health_conditions = [{"condition": "πŸ’” Heart disease", "emoji": "πŸ’—", "spending": 214.3}, {"condition": "πŸ€• Trauma-related disorders", "emoji": "πŸš‘", "spending": 198.6}, {"condition": "πŸ¦€ Cancer", "emoji": "πŸŽ—οΈ", "spending": 171.0}, {"condition": "🧠 Mental disorders", "emoji": "🧘", "spending": 150.8}, {"condition": "🦴 Osteoarthritis and joint disorders", "emoji": "πŸ₯", "spending": 142.4}, {"condition": "πŸ’‰ Diabetes", "emoji": "🩸", "spending": 107.4}, {"condition": "🫁 Chronic obstructive pulmonary disease and asthma", "emoji": "πŸ«€", "spending": 91.0}, {"condition": "🩺 Hypertension", "emoji": "πŸ’‰", "spending": 83.9}, {"condition": "πŸ”¬ Hyperlipidemia", "emoji": "πŸ”¬", "spending": 83.9}, {"condition": "🦴 Back problems", "emoji": "🧍", "spending": 67.0}]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  df_top_conditions = pd.DataFrame(health_conditions)
 
 
5
  total_spending = round(df_top_conditions["spending"].sum(), 1)
6
- def roll(): return [random.randint(1, 10) for _ in range(1000)]
7
- fig_sunburst = go.Figure(go.Sunburst(labels=df_top_conditions["emoji"] + " " + df_top_conditions["condition"], parents=[""] * top_n, values=df_top_conditions["spending"], maxdepth=2))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  fig_sunburst.update_layout(title=f"Top {top_n} Health Conditions in {', '.join(states)} by Spending (Total: ${total_spending}B)")
 
 
9
  st.plotly_chart(fig_sunburst)
10
  for index, row in df_top_conditions.iterrows():
11
  frequencies = roll()
12
- fig_bar = px.bar(x=[f"Variant {i}" for i in range(1, 11)], y=frequencies, labels={'x': 'Variant', 'y': 'Frequency'})
13
  fig_bar.update_layout(title=f"Variants of {row['condition']} ({row['emoji']})")
14
  st.plotly_chart(fig_bar)
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import random
4
+ import plotly.graph_objects as go
5
+ import plotly.express as px
6
+
7
+ # Define the states and conditions of interest
8
+ states = ["Minnesota", "Florida", "California"]
9
+ top_n = 10
10
+
11
+ # Define the list dictionary of top 10 health conditions descending by cost, with emojis
12
+ health_conditions = [
13
+ {"condition": "πŸ’” Heart disease", "emoji": "πŸ’—", "spending": 214.3},
14
+ {"condition": "πŸ€• Trauma-related disorders", "emoji": "πŸš‘", "spending": 198.6},
15
+ {"condition": "πŸ¦€ Cancer", "emoji": "πŸŽ—οΈ", "spending": 171.0},
16
+ {"condition": "🧠 Mental disorders", "emoji": "🧘", "spending": 150.8},
17
+ {"condition": "🦴 Osteoarthritis and joint disorders", "emoji": "πŸ₯", "spending": 142.4},
18
+ {"condition": "πŸ’‰ Diabetes", "emoji": "🩸", "spending": 107.4},
19
+ {"condition": "🫁 Chronic obstructive pulmonary disease and asthma", "emoji": "πŸ«€", "spending": 91.0},
20
+ {"condition": "🩺 Hypertension", "emoji": "πŸ’‰", "spending": 83.9},
21
+ {"condition": "πŸ”¬ Hyperlipidemia", "emoji": "πŸ”¬", "spending": 83.9},
22
+ {"condition": "🦴 Back problems", "emoji": "🧍", "spending": 67.0}
23
+ ]
24
+
25
+ # Create a DataFrame from the list dictionary
26
  df_top_conditions = pd.DataFrame(health_conditions)
27
+
28
+ # Calculate the total spending
29
  total_spending = round(df_top_conditions["spending"].sum(), 1)
30
+
31
+ # Define the roll function
32
+ def roll():
33
+ # Generate a thousand 10-sided dice rolls for each health condition
34
+ rolls = [random.randint(1, 10) for _ in range(1000)]
35
+ # Calculate the frequency of each variant
36
+ frequencies = [rolls.count(i) for i in range(1, 11)]
37
+ return frequencies
38
+
39
+ # Define the sunburst chart
40
+ fig_sunburst = go.Figure(go.Sunburst(
41
+ labels=df_top_conditions["emoji"] + " " + df_top_conditions["condition"],
42
+ parents=[""] * top_n,
43
+ values=df_top_conditions["spending"],
44
+ maxdepth=2
45
+ ))
46
+
47
+ # Customize the layout of the sunburst chart
48
  fig_sunburst.update_layout(title=f"Top {top_n} Health Conditions in {', '.join(states)} by Spending (Total: ${total_spending}B)")
49
+
50
+ # Display the sunburst chart and variants per condition in the Streamlit app
51
  st.plotly_chart(fig_sunburst)
52
  for index, row in df_top_conditions.iterrows():
53
  frequencies = roll()
54
+ fig_bar = px.bar(x=[f"Variant {i}" for i in range(1, 11)], y=frequencies[:10], labels={'x': 'Variant', 'y': 'Frequency'})
55
  fig_bar.update_layout(title=f"Variants of {row['condition']} ({row['emoji']})")
56
  st.plotly_chart(fig_bar)