Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,27 +4,22 @@ import random
|
|
4 |
import plotly.graph_objects as go
|
5 |
import plotly.express as px
|
6 |
|
7 |
-
url = 'https://www.cms.gov/icd10m/version36-fullcode-cms/fullcode_cms/P0001.zip'
|
8 |
-
df_icd10 = pd.read_csv(url, sep='\t', compression='zip')
|
9 |
-
df_icd10 = df_icd10[['MS-DRG', 'MS-DRG Title', 'ICD-10-PCS', 'ICD-10-PCS Description', 'ICD-10-CM Code', 'ICD-10-CM Code Description']]
|
10 |
-
df_icd10 = df_icd10[df_icd10['MS-DRG Title'].str.contains('Diseases of the Circulatory System', case=False)]
|
11 |
-
|
12 |
# Define the states and conditions of interest
|
13 |
states = ["Minnesota", "Florida", "California"]
|
14 |
top_n = 10
|
15 |
|
16 |
# Define the list dictionary of top 10 health conditions descending by cost, with emojis
|
17 |
health_conditions = [
|
18 |
-
{"condition": "π Heart disease", "emoji": "π", "
|
19 |
-
{"condition": "π€ Trauma-related disorders", "emoji": "π", "
|
20 |
-
{"condition": "π¦ Cancer", "emoji": "ποΈ", "
|
21 |
-
{"condition": "π§ Mental disorders", "emoji": "π§", "
|
22 |
-
{"condition": "𦴠Osteoarthritis and joint disorders", "emoji": "π₯", "
|
23 |
-
{"condition": "π Diabetes", "emoji": "π©Έ", "
|
24 |
-
{"condition": "π« Chronic obstructive pulmonary disease and asthma", "emoji": "π«", "
|
25 |
-
{"condition": "π©Ί Hypertension", "emoji": "π", "
|
26 |
-
{"condition": "π¬ Hyperlipidemia", "emoji": "π¬", "
|
27 |
-
{"condition": "𦴠Back problems", "emoji": "π§", "
|
28 |
]
|
29 |
|
30 |
# Create a DataFrame from the list dictionary
|
@@ -34,32 +29,28 @@ df_top_conditions = pd.DataFrame(health_conditions)
|
|
34 |
total_spending = round(df_top_conditions["spending"].sum(), 1)
|
35 |
|
36 |
# Define the roll function
|
37 |
-
def roll(
|
38 |
-
#
|
39 |
-
|
40 |
-
#
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
fig_bar.update_layout(barmode='group', title=f"Top 3 Variants by Spending for Each Health Condition in {', '.join(states)}", xaxis_title='ICD-10-CM Code Description', yaxis_title='Spending')
|
63 |
-
|
64 |
-
# Display the bar chart in the Streamlit app
|
65 |
-
st.plotly_chart(fig_bar)
|
|
|
4 |
import plotly.graph_objects as go
|
5 |
import plotly.express as px
|
6 |
|
|
|
|
|
|
|
|
|
|
|
7 |
# Define the states and conditions of interest
|
8 |
states = ["Minnesota", "Florida", "California"]
|
9 |
top_n = 10
|
10 |
|
11 |
# Define the list dictionary of top 10 health conditions descending by cost, with emojis
|
12 |
health_conditions = [
|
13 |
+
{"condition": "π Heart disease", "emoji": "π", "spending": 214.3},
|
14 |
+
{"condition": "π€ Trauma-related disorders", "emoji": "π", "spending": 198.6},
|
15 |
+
{"condition": "π¦ Cancer", "emoji": "ποΈ", "spending": 171.0},
|
16 |
+
{"condition": "π§ Mental disorders", "emoji": "π§", "spending": 150.8},
|
17 |
+
{"condition": "𦴠Osteoarthritis and joint disorders", "emoji": "π₯", "spending": 142.4},
|
18 |
+
{"condition": "π Diabetes", "emoji": "π©Έ", "spending": 107.4},
|
19 |
+
{"condition": "π« Chronic obstructive pulmonary disease and asthma", "emoji": "π«", "spending": 91.0},
|
20 |
+
{"condition": "π©Ί Hypertension", "emoji": "π", "spending": 83.9},
|
21 |
+
{"condition": "π¬ Hyperlipidemia", "emoji": "π¬", "spending": 83.9},
|
22 |
+
{"condition": "𦴠Back problems", "emoji": "π§", "spending": 67.0}
|
23 |
]
|
24 |
|
25 |
# Create a DataFrame from the list dictionary
|
|
|
29 |
total_spending = round(df_top_conditions["spending"].sum(), 1)
|
30 |
|
31 |
# Define the roll function
|
32 |
+
def roll():
|
33 |
+
# Generate a thousand 10-sided dice rolls for each health condition
|
34 |
+
rolls = [random.randint(1, 10) for _ in range(1000)]
|
35 |
+
# Calculate the frequency of each variant
|
36 |
+
frequencies = [rolls.count(i) for i in range(1, 11)]
|
37 |
+
return frequencies
|
38 |
+
|
39 |
+
# Define the sunburst chart
|
40 |
+
fig_sunburst = go.Figure(go.Sunburst(
|
41 |
+
labels=df_top_conditions["emoji"] + " " + df_top_conditions["condition"],
|
42 |
+
parents=[""] * top_n,
|
43 |
+
values=df_top_conditions["spending"],
|
44 |
+
maxdepth=2
|
45 |
+
))
|
46 |
+
|
47 |
+
# Customize the layout of the sunburst chart
|
48 |
+
fig_sunburst.update_layout(title=f"Top {top_n} Health Conditions in {', '.join(states)} by Spending (Total: ${total_spending}B)")
|
49 |
+
|
50 |
+
# Display the sunburst chart and variants per condition in the Streamlit app
|
51 |
+
st.plotly_chart(fig_sunburst)
|
52 |
+
for index, row in df_top_conditions.iterrows():
|
53 |
+
frequencies = roll()
|
54 |
+
fig_bar = px.bar(x=[f"Variant {i}" for i in range(1, 11)], y=frequencies[:10], labels={'x': 'Variant', 'y': 'Frequency'})
|
55 |
+
fig_bar.update_layout(title=f"Variants of {row['condition']} ({row['emoji']})")
|
56 |
+
st.plotly_chart(fig_bar)
|
|
|
|
|
|
|
|