awacke1 commited on
Commit
40ed27a
·
1 Parent(s): d21eb79

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -14
app.py CHANGED
@@ -2,22 +2,22 @@ import streamlit as st
2
  import plotly.express as px
3
  import pandas as pd
4
 
5
- # Define the states and conditions of interest
6
- states = ["Minnesota", "Florida", "California"]
7
  top_n = 10
8
 
9
- # Define the list dictionary of top 10 health conditions descending by cost
10
  health_conditions = [
11
- {"condition": "Heart disease", "spending": 214.3},
12
- {"condition": "Trauma-related disorders", "spending": 198.6},
13
- {"condition": "Cancer", "spending": 171.0},
14
- {"condition": "Mental disorders", "spending": 150.8},
15
- {"condition": "Osteoarthritis and joint disorders", "spending": 142.4},
16
- {"condition": "Diabetes", "spending": 107.4},
17
- {"condition": "Chronic obstructive pulmonary disease and asthma", "spending": 91.0},
18
- {"condition": "Hypertension", "spending": 83.9},
19
- {"condition": "Hyperlipidemia", "spending": 83.9},
20
- {"condition": "Back problems", "spending": 67.0}
21
  ]
22
 
23
  # Total the spending values
@@ -26,8 +26,17 @@ total_spending = sum([hc["spending"] for hc in health_conditions])
26
  # Create a DataFrame from the list dictionary
27
  df_top_conditions = pd.DataFrame(health_conditions)
28
 
 
 
 
 
 
 
 
 
 
29
  # Create the treemap graph using Plotly Express
30
- fig = px.treemap(df_top_conditions, path=["condition"], values="spending")
31
 
32
  # Set the title of the graph
33
  fig.update_layout(title=f"Top {top_n} Health Conditions in {', '.join(states)} by Spending (Total: ${total_spending}B)")
 
2
  import plotly.express as px
3
  import pandas as pd
4
 
5
+ # Define the states and conditions of interest with emojis
6
+ states = ["Minnesota 🌲", "Florida 🌴", "California 🌞"]
7
  top_n = 10
8
 
9
+ # Define the list dictionary of top 10 health conditions descending by cost with emojis
10
  health_conditions = [
11
+ {"condition": "Heart disease ❤️", "spending": 214.3},
12
+ {"condition": "Trauma-related disorders 🤕", "spending": 198.6},
13
+ {"condition": "Cancer 🦀", "spending": 171.0},
14
+ {"condition": "Mental disorders 🧠", "spending": 150.8},
15
+ {"condition": "Osteoarthritis and joint disorders 🦴", "spending": 142.4},
16
+ {"condition": "Diabetes 🍬", "spending": 107.4},
17
+ {"condition": "Chronic obstructive pulmonary disease and asthma 🫁", "spending": 91.0},
18
+ {"condition": "Hypertension 🩺", "spending": 83.9},
19
+ {"condition": "Hyperlipidemia 🍔", "spending": 83.9},
20
+ {"condition": "Back problems 👨‍⚕️", "spending": 67.0}
21
  ]
22
 
23
  # Total the spending values
 
26
  # Create a DataFrame from the list dictionary
27
  df_top_conditions = pd.DataFrame(health_conditions)
28
 
29
+ # Create a new field showing the state with the most cases per year for each condition
30
+ df_top_conditions['most_cases_state'] = ''
31
+ for i, row in df_top_conditions.iterrows():
32
+ condition = row['condition'].split(' ')[0]
33
+ condition_df = pd.read_csv(f'{condition}.csv')
34
+ condition_df = condition_df[condition_df['state'].isin(states)]
35
+ most_cases_state = condition_df.groupby('state')['cases'].sum().idxmax()
36
+ df_top_conditions.at[i, 'most_cases_state'] = f'{most_cases_state} 🏆'
37
+
38
  # Create the treemap graph using Plotly Express
39
+ fig = px.treemap(df_top_conditions, path=["condition"], values="spending", color='most_cases_state')
40
 
41
  # Set the title of the graph
42
  fig.update_layout(title=f"Top {top_n} Health Conditions in {', '.join(states)} by Spending (Total: ${total_spending}B)")