awacke1 commited on
Commit
e3887ab
·
1 Parent(s): a0496ef

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -9
app.py CHANGED
@@ -1,23 +1,35 @@
1
  import streamlit as st
2
  import plotly.express as px
3
- import pandas as pd
4
-
5
- # Load the data
6
- df = pd.read_csv("health_conditions_data.csv")
7
 
8
  # Define the states and conditions of interest
9
  states = ["Minnesota", "Florida", "California"]
10
  top_n = 10
11
 
12
- # Filter the data by the selected states and get the top n conditions
13
- df_filtered = df[df["state"].isin(states)]
14
- df_top_conditions = df_filtered.groupby("condition")["count"].sum().nlargest(top_n)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
  # Create the treemap graph using Plotly Express
17
- fig = px.treemap(df_top_conditions, path=["condition"], values="count")
18
 
19
  # Set the title of the graph
20
- fig.update_layout(title="Top 10 Health Conditions in {} by Count".format(", ".join(states)))
21
 
22
  # Display the graph in Streamlit
23
  st.plotly_chart(fig)
 
1
  import streamlit as st
2
  import plotly.express as px
 
 
 
 
3
 
4
  # Define the states and conditions of interest
5
  states = ["Minnesota", "Florida", "California"]
6
  top_n = 10
7
 
8
+ # Define the list dictionary of top 10 health conditions descending by cost
9
+ health_conditions = [
10
+ {"condition": "Heart disease", "spending": 214.3},
11
+ {"condition": "Trauma-related disorders", "spending": 198.6},
12
+ {"condition": "Cancer", "spending": 171.0},
13
+ {"condition": "Mental disorders", "spending": 150.8},
14
+ {"condition": "Osteoarthritis and joint disorders", "spending": 142.4},
15
+ {"condition": "Diabetes", "spending": 107.4},
16
+ {"condition": "Chronic obstructive pulmonary disease and asthma", "spending": 91.0},
17
+ {"condition": "Hypertension", "spending": 83.9},
18
+ {"condition": "Hyperlipidemia", "spending": 83.9},
19
+ {"condition": "Back problems", "spending": 67.0}
20
+ ]
21
+
22
+ # Total the spending values
23
+ total_spending = sum([hc["spending"] for hc in health_conditions])
24
+
25
+ # Create a DataFrame from the list dictionary
26
+ df_top_conditions = pd.DataFrame(health_conditions)
27
 
28
  # Create the treemap graph using Plotly Express
29
+ fig = px.treemap(df_top_conditions, path=["condition"], values="spending")
30
 
31
  # Set the title of the graph
32
+ fig.update_layout(title=f"Top {top_n} Health Conditions in {', '.join(states)} by Spending (Total: ${total_spending}B)")
33
 
34
  # Display the graph in Streamlit
35
  st.plotly_chart(fig)