File size: 7,586 Bytes
7b77cda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92dc76b
 
 
 
ddb449b
 
 
 
 
 
 
 
 
 
 
 
 
92dc76b
 
3a08fb3
92dc76b
 
 
 
 
 
 
 
 
 
ddb449b
4da025e
 
 
ddb449b
4da025e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e309558
 
4da025e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddb449b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# List of URLs provided by the user
urls = [
    "https://huggingface.co/spaces/awacke1/CB-GR-Chatbot-Blenderbot",
    "https://huggingface.co/spaces/awacke1/TTS-STT-Blocks",
    "https://huggingface.co/spaces/awacke1/Prompt-Refinery-Text-to-Image-Generation",
    "https://huggingface.co/spaces/awacke1/Video-Summary",
    "https://huggingface.co/spaces/awacke1/AI-MovieMaker-Comedy",
    "https://huggingface.co/spaces/awacke1/ChatGPT-Memory-Chat-Story-Generator",
    "https://huggingface.co/spaces/awacke1/CloneAnyVoice",
    "https://huggingface.co/spaces/awacke1/ChatGPT-Streamlit-2",
    "https://huggingface.co/spaces/awacke1/WikipediaUltimateAISearch",
    "https://huggingface.co/spaces/awacke1/RLHF.Cognitive.Episodic.Semantic.Memory",
    "https://huggingface.co/spaces/awacke1/Memory-Shared",
    "https://huggingface.co/spaces/awacke1/VideoSwap",
    "https://huggingface.co/spaces/awacke1/AI-Wikipedia-Search",
    "https://huggingface.co/spaces/awacke1/AutoMLUsingStreamlit-Plotly",
    "https://huggingface.co/spaces/awacke1/NLP-Lyric-Chorus-Image",
    "https://huggingface.co/spaces/awacke1/OpenAssistant-Chatbot-FTW-Open-Source",
    "https://huggingface.co/spaces/awacke1/ChatGPTStreamlit7",
    "https://huggingface.co/spaces/awacke1/MultiPDF-QA-ChatGPT-Langchain",
    "https://huggingface.co/spaces/awacke1/SOTA-Plan",
    "https://huggingface.co/spaces/awacke1/AIandSmartTools",
    "https://huggingface.co/spaces/awacke1/3DVirtualFood",
    "https://huggingface.co/spaces/awacke1/Gradio-Gallery-Health-Medical-Icon-Sets",
    "https://huggingface.co/spaces/awacke1/DatasetAnalyzer",
    "https://huggingface.co/spaces/awacke1/PrompTart",
    "https://huggingface.co/spaces/awacke1/sileod-deberta-v3-base-tasksource-nli",
    "https://huggingface.co/spaces/awacke1/File-Memory-Operations-Human-Feedback-Gradio",
    "https://huggingface.co/spaces/awacke1/Bloom.Big.Science.Continual.Generator",
    "https://huggingface.co/spaces/awacke1/Ontology-Gradio",
    "https://huggingface.co/spaces/awacke1/HTML5-Aframe-3dMap-Flight",
    "https://huggingface.co/spaces/awacke1/Bloom.Generative.Writer",
    "https://huggingface.co/spaces/awacke1/Voice-ChatGPT-Streamlit-12",
    "https://huggingface.co/spaces/awacke1/HTML5-AR-VR",
    "https://huggingface.co/spaces/awacke1/AnimationAI",
    "https://huggingface.co/spaces/awacke1/GenerativeWordsandImages",
    "https://huggingface.co/spaces/awacke1/AR-VR-IOT-Demo",
    "https://huggingface.co/spaces/awacke1/ArtStyleFoodsandNutrition",
    "https://huggingface.co/spaces/awacke1/CarePlanQnAWithContext",
    "https://huggingface.co/spaces/awacke1/VideoSummaryYoutube3",
    "https://huggingface.co/spaces/awacke1/AW-01ST-CSV-Dataset-Analyzer",
    "https://huggingface.co/spaces/awacke1/Try.Playing.Learning.Sharing.On.This",
    "https://huggingface.co/spaces/awacke1/google-flan-t5-base",
    "https://huggingface.co/spaces/awacke1/PubMed-Parrot-Paraphraser-on-T5",
    "https://huggingface.co/spaces/awacke1/Writing-Grammar-And-Paraphrase-w-Pegasus",
    "https://huggingface.co/spaces/awacke1/runwayml-stable-diffusion-v1-5",
    "https://huggingface.co/spaces/awacke1/DockerGoFlanT5",
    "https://huggingface.co/spaces/awacke1/GradioContinualGenerator",
    "https://huggingface.co/spaces/awacke1/StreamlitSuperPowerCheatSheet"
]

# Extract the last part of each URL (after the last '/') to serve as the name of the button
url_names = [url.split('/')[-1] for url in urls]

# Associate each URL with a relevant emoji based on keywords in its name
emoji_mapping = {
    "Chatbot": "πŸ€–",
    "TTS": "πŸ—£οΈ",
    "STT": "πŸ‘‚",
    "Video": "πŸŽ₯",
    "MovieMaker": "🍿",
    "ChatGPT": "πŸ’¬",
    "Voice": "πŸŽ™οΈ",
    "Wikipedia": "πŸ“–",
    "Memory": "🧠",
    "AI": "🧠",
    "OpenAssistant": "🀝",
    "3D": "πŸ•ΆοΈ",
    "AR": "πŸ‘“",
    "VR": "πŸ•ΆοΈ",
    "Animation": "πŸ–ŒοΈ",
    "Dataset": "πŸ“Š",
    "Gradio": "πŸ“»",
    "HTML5": "🌐",
    "Writing": "✍️",
    "Grammar": "πŸ–‹οΈ",
    "Paraphrase": "πŸ”„",
    "Streamlit": "🌠"
}

# Map each URL name to its most relevant emoji
url_emojis = []
for name in url_names:
    associated_emoji = "πŸ”—"  # Default emoji
    for keyword, emoji in emoji_mapping.items():
        if keyword in name:
            associated_emoji = emoji
            break
    url_emojis.append(associated_emoji)

#url_emojis[:5], url_names[:5]  # Display the first 5 URL names with their associated emojis

import streamlit as st
import json
import webbrowser

# Function to load the history of clicks from the text file
def load_history():
    try:
        with open("click_history.txt", "r") as f:
            return json.load(f)
    except FileNotFoundError:
        return {url: 0 for url in urls}

# Function to save the updated history of clicks to the text file
def save_history(history):
    with open("click_history.txt", "w") as f:
        json.dump(history, f)

# Load the history of clicks
history = load_history()

# Display the buttons for each URL
for url, name, emoji in zip(urls, url_names, url_emojis):
    if st.button(f"{emoji} {name}"):
        # Open the URL in a new browser tab using JavaScript
        st.write('<script>window.open("'+url+'", "_blank");</script>', unsafe_allow_html=True)
        # Update the history of clicks
        history[url] += 1
        save_history(history)
    # Display the number of times the URL was opened below its corresponding button
    st.write(f"Clicked: {history[url]} times")

import time
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource

# ... [rest of the initial code remains unchanged] ...

# Streamlit app
def main():

    # Session state to hold the value of AutoRepeat button across reruns
    if "auto_repeat" not in st.session_state:
        st.session_state.auto_repeat = "On"
    if "current_index" not in st.session_state:
        st.session_state.current_index = 0  # Use 0 as a default index

    # Load the history of clicks
    history = load_history()

    # Display the buttons for each URL
    for url, name, emoji in zip(urls, url_names, url_emojis):
        #if st.button(f"{emoji} {name}"):
        if st.button(f"{emoji} {name}", key=url):  # using the URL as the unique key
            # Open the URL in a new browser tab using JavaScript
            st.write('<script>window.open("'+url+'", "_blank");</script>', unsafe_allow_html=True)
            # Update the history of clicks
            history[url] += 1
            save_history(history)
        # Display the number of times the URL was opened below its corresponding button
        st.write(f"Clicked: {history[url]} times")

    # Timer logic
    if st.session_state.auto_repeat == "On":
        timer_placeholder = st.empty()
        for i in range(10, 0, -1):
            timer_placeholder.text(f"Reloading in {i} seconds...")
            time.sleep(1)
        history = load_history()  # Reload the history after the countdown

        # Display the Bokeh graph showing the click counts
        non_zero_urls = [name for url, name in zip(urls, url_names) if history[url] > 0]
        non_zero_counts = [history[url] for url in urls if history[url] > 0]

        source = ColumnDataSource(data=dict(urls=non_zero_urls, counts=non_zero_counts))

        p = figure(x_range=non_zero_urls, plot_height=350, title="Click Counts per URL",
                   toolbar_location=None, tools="")
        p.vbar(x='urls', top='counts', width=0.9, source=source)
        p.xaxis.major_label_orientation = 1.2

        st.bokeh_chart(p)

if __name__ == "__main__":
    main()