Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import re
|
3 |
+
import nltk
|
4 |
+
from nltk.corpus import stopwords
|
5 |
+
from nltk import FreqDist
|
6 |
+
from graphviz import Digraph
|
7 |
+
from collections import Counter
|
8 |
+
import datetime
|
9 |
+
import pandas as pd
|
10 |
+
from PyPDF2 import PdfFileReader
|
11 |
+
from io import StringIO, BytesIO
|
12 |
+
|
13 |
+
nltk.download('punkt')
|
14 |
+
nltk.download('stopwords')
|
15 |
+
|
16 |
+
|
17 |
+
def remove_timestamps(text):
|
18 |
+
return re.sub(r'\d{1,2}:\d{2}\n', '', text)
|
19 |
+
|
20 |
+
|
21 |
+
def process_text(text):
|
22 |
+
lines = text.split("\n")
|
23 |
+
processed_lines = []
|
24 |
+
|
25 |
+
for line in lines:
|
26 |
+
if line:
|
27 |
+
processed_lines.append(line)
|
28 |
+
|
29 |
+
outline = ""
|
30 |
+
for i, line in enumerate(processed_lines):
|
31 |
+
if i % 2 == 0:
|
32 |
+
outline += f"**{line}**\n"
|
33 |
+
else:
|
34 |
+
outline += f"- {line} 😄\n"
|
35 |
+
|
36 |
+
return outline
|
37 |
+
|
38 |
+
|
39 |
+
def extract_high_information_words(text, top_n=10):
|
40 |
+
words = nltk.word_tokenize(text)
|
41 |
+
words = [word.lower() for word in words if word.isalpha()]
|
42 |
+
|
43 |
+
stop_words = set(stopwords.words('english'))
|
44 |
+
filtered_words = [word for word in words if word not in stop_words]
|
45 |
+
|
46 |
+
freq_dist = FreqDist(filtered_words)
|
47 |
+
high_information_words = [word for word, _ in freq_dist.most_common(top_n)]
|
48 |
+
|
49 |
+
return high_information_words
|
50 |
+
|
51 |
+
|
52 |
+
def create_relationship_graph(words):
|
53 |
+
graph = Digraph()
|
54 |
+
|
55 |
+
for index, word in enumerate(words):
|
56 |
+
graph.node(str(index), word)
|
57 |
+
|
58 |
+
if index > 0:
|
59 |
+
graph.edge(str(index - 1), str(index), label=str(index))
|
60 |
+
|
61 |
+
return graph
|
62 |
+
|
63 |
+
|
64 |
+
def display_relationship_graph(words):
|
65 |
+
graph = create_relationship_graph(words)
|
66 |
+
st.graphviz_chart(graph)
|
67 |
+
|
68 |
+
|
69 |
+
def save_text_file(text):
|
70 |
+
date_str = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
|
71 |
+
file_name = f"{date_str}.txt"
|
72 |
+
with open(file_name, 'w') as f:
|
73 |
+
f.write(text)
|
74 |
+
return file_name
|
75 |
+
|
76 |
+
|
77 |
+
def extract_text_from_uploaded_files(uploaded_files):
|
78 |
+
merged_text = ""
|
79 |
+
|
80 |
+
for uploaded_file in uploaded_files:
|
81 |
+
extension = uploaded_file.name.split('.')[-1]
|
82 |
+
|
83 |
+
if extension == "txt":
|
84 |
+
merged_text += uploaded_file.read().decode()
|
85 |
+
|
86 |
+
elif extension == "pdf":
|
87 |
+
pdf = PdfFileReader(uploaded_file)
|
88 |
+
for page_num in range(pdf.numPages):
|
89 |
+
page = pdf.getPage(page_num)
|
90 |
+
merged_text += page.extractText()
|
91 |
+
|
92 |
+
elif extension == "csv":
|
93 |
+
df = pd.read_csv(uploaded_file)
|
94 |
+
merged_text += '\n'.join(df.applymap(str).agg(' '.join, axis=1))
|
95 |
+
|
96 |
+
return merged_text
|
97 |
+
|
98 |
+
|
99 |
+
uploaded_files = st.file_uploader("Choose files", type=['txt', 'pdf', 'csv'], accept_multiple_files=True)
|
100 |
+
|
101 |
+
if uploaded_files:
|
102 |
+
merged_text = extract_text_from_uploaded_files(uploaded_files)
|
103 |
+
save_text_file(merged_text)
|
104 |
+
|
105 |
+
text_without_timestamps = remove_timestamps(merged_text)
|
106 |
+
|
107 |
+
st.markdown("**Text without Timestamps:**")
|
108 |
+
st.write(text_without_timestamps)
|
109 |
+
|
110 |
+
processed_text = process_text(text_without_timestamps)
|
111 |
+
st.markdown("**Markdown Outline with Emojis:**")
|
112 |
+
st.markdown(processed_text)
|
113 |
+
|
114 |
+
top_words = extract_high_information_words(text_without_timestamps, 10)
|
115 |
+
st.markdown("**Top 10 High Information Words:**")
|
116 |
+
st.write(top_words)
|
117 |
+
|
118 |
+
st.markdown("**Relationship Graph:**")
|
119 |
+
display_relationship_graph(top_words)
|