Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,44 +11,42 @@ headers = {
|
|
| 11 |
"Content-Type": "application/json"
|
| 12 |
}
|
| 13 |
|
| 14 |
-
|
| 15 |
-
hf_token = API_KEY
|
| 16 |
-
client = InferenceClient(endpoint_url, token=hf_token)
|
| 17 |
-
gen_kwargs = dict(
|
| 18 |
-
max_new_tokens=512,
|
| 19 |
-
top_k=30,
|
| 20 |
-
top_p=0.9,
|
| 21 |
-
temperature=0.2,
|
| 22 |
-
repetition_penalty=1.02,
|
| 23 |
-
stop_sequences=["\nUser:", "<|endoftext|>", "</s>"],
|
| 24 |
-
)
|
| 25 |
prompt = f"Write instructions to teach anyone to write a discharge plan. List the entities, features and relationships to CCDA and FHIR objects in boldface."
|
| 26 |
-
stream = client.text_generation(prompt, stream=True, details=True, **gen_kwargs)
|
| 27 |
-
report=[]
|
| 28 |
-
res_box = st.empty()
|
| 29 |
-
collected_chunks=[]
|
| 30 |
-
collected_messages=[]
|
| 31 |
-
for r in stream:
|
| 32 |
-
if r.token.special:
|
| 33 |
-
continue
|
| 34 |
-
if r.token.text in gen_kwargs["stop_sequences"]:
|
| 35 |
-
break
|
| 36 |
-
collected_chunks.append(r.token.text)
|
| 37 |
-
chunk_message = r.token.text
|
| 38 |
-
collected_messages.append(chunk_message)
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
def query(payload):
|
| 54 |
response = requests.post(API_URL, headers=headers, json=payload)
|
|
@@ -60,17 +58,11 @@ def get_output(prompt):
|
|
| 60 |
|
| 61 |
def main():
|
| 62 |
st.title("Medical Llama Test Bench with Inference Endpoints Llama 7B")
|
| 63 |
-
|
|
|
|
| 64 |
|
| 65 |
-
if st.button("
|
| 66 |
-
|
| 67 |
-
output = get_output(prompt)
|
| 68 |
-
st.markdown(f"**Output:** {output}")
|
| 69 |
-
|
| 70 |
-
if st.button("Summarize with Variation 2"):
|
| 71 |
-
prompt = f"Provide a summary of the medical transcription. Highlight the important entities, features, and relationships to CCDA and FHIR objects. {example_input}"
|
| 72 |
-
output = get_output(prompt)
|
| 73 |
-
st.markdown(f"**Output:** {output}")
|
| 74 |
|
| 75 |
if __name__ == "__main__":
|
| 76 |
main()
|
|
|
|
| 11 |
"Content-Type": "application/json"
|
| 12 |
}
|
| 13 |
|
| 14 |
+
# Prompt Set of Examples:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
prompt = f"Write instructions to teach anyone to write a discharge plan. List the entities, features and relationships to CCDA and FHIR objects in boldface."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
def StreamLLMChatResponse(prompt):
|
| 18 |
+
endpoint_url = API_URL
|
| 19 |
+
hf_token = API_KEY
|
| 20 |
+
client = InferenceClient(endpoint_url, token=hf_token)
|
| 21 |
+
gen_kwargs = dict(
|
| 22 |
+
max_new_tokens=512,
|
| 23 |
+
top_k=30,
|
| 24 |
+
top_p=0.9,
|
| 25 |
+
temperature=0.2,
|
| 26 |
+
repetition_penalty=1.02,
|
| 27 |
+
stop_sequences=["\nUser:", "<|endoftext|>", "</s>"],
|
| 28 |
+
)
|
| 29 |
+
stream = client.text_generation(prompt, stream=True, details=True, **gen_kwargs)
|
| 30 |
+
report=[]
|
| 31 |
+
res_box = st.empty()
|
| 32 |
+
collected_chunks=[]
|
| 33 |
+
collected_messages=[]
|
| 34 |
+
for r in stream:
|
| 35 |
+
if r.token.special:
|
| 36 |
+
continue
|
| 37 |
+
if r.token.text in gen_kwargs["stop_sequences"]:
|
| 38 |
+
break
|
| 39 |
+
collected_chunks.append(r.token.text)
|
| 40 |
+
chunk_message = r.token.text
|
| 41 |
+
collected_messages.append(chunk_message)
|
| 42 |
|
| 43 |
+
try:
|
| 44 |
+
report.append(r.token.text)
|
| 45 |
+
if len(r.token.text) > 0:
|
| 46 |
+
result="".join(report).strip()
|
| 47 |
+
res_box.markdown(f'*{result}*')
|
| 48 |
+
except:
|
| 49 |
+
st.write(' ')
|
| 50 |
|
| 51 |
def query(payload):
|
| 52 |
response = requests.post(API_URL, headers=headers, json=payload)
|
|
|
|
| 58 |
|
| 59 |
def main():
|
| 60 |
st.title("Medical Llama Test Bench with Inference Endpoints Llama 7B")
|
| 61 |
+
prompt = f"Write instructions to teach anyone to write a discharge plan. List the entities, features and relationships to CCDA and FHIR objects in boldface."
|
| 62 |
+
example_input = st.text_input("Enter your example text:", value=prompt)
|
| 63 |
|
| 64 |
+
if st.button("Run Prompt With Dr Llama"):
|
| 65 |
+
StreamLLMChatResponse(example_input)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
if __name__ == "__main__":
|
| 68 |
main()
|