import streamlit as st # Page title st.title("πŸ©ΊπŸ” Search Results") # Date and title st.markdown("**Date:** 08 Dec 2023") st.markdown("**Title:** Machine-learned molecular mechanics force field for the simulation of protein-ligand systems and beyond") st.markdown("[**Abstract Link**](https://arxiv.org/abs/2307.07085)") st.markdown("[**PDF Link**](https://arxiv.org/pdf/2307.07085)") st.write("---") # Sample table search_data = [ {"Date": "08 Dec 2023", "Title": "Machine-learned molecular mechanics force field for the simulation of protein-ligand systems and beyond", "Abstract Link": "https://arxiv.org/abs/2307.07085", "PDF Link": "https://arxiv.org/pdf/2307.07085"}, {"Date": "11 Apr 2023", "Title": "Design, Integration, and Field Evaluation of a Robotic Blossom Thinning System for Tree Fruit Crops", "Abstract Link": "https://arxiv.org/abs/2304.04919", "PDF Link": "https://arxiv.org/pdf/2304.04919"}, # Add more rows as needed... ] # Display table in Streamlit st.write("### πŸ“… Summary of Search Results") st.table(search_data) st.markdown(''' Discovery of Espaloma-0.3 (Hero's Journey) Ordinary World: Traditional force fields struggle with flexibility and extensibility. Call to Adventure: Researchers propose a new approach using graph neural networks. Refusal of the Call: Skeptics doubt the new method's feasibility without extensive computational resources. Meeting the Mentor: Collaboration with experts in quantum chemistry and machine learning. Crossing the Threshold: Initial tests show promising results, validating the concept. Tests, Allies, and Enemies: The method faces challenges with specific molecular systems but gains support. Approach to the Inmost Cave: Intensive training on a diverse dataset. Ordeal: Tackling edge cases and ensuring stability in simulations. Reward: The model achieves impressive accuracy and robustness. The Road Back: Publication and refinement for real-world applications. Resurrection: Acceptance and adoption in the wider scientific community. Return with the Elixir: A new, powerful tool for drug discovery and molecular simulations. Robotic Blossom Thinning (Rags to Riches) Initial Wholeness: Apple orchards rely heavily on manual labor. Fall from Grace: Inefficiency and cost concerns rise. Journey: Researchers develop a robotic solution for blossom thinning. Personal Resolve: Field tests reveal the robot's potential. Self-discovery: Optimizing the end-effector's performance. Major Victory: Significant reduction in labor and cost. False Defeat: Encountering technical issues during deployment. Final Victory: Successful large-scale adoption of the robotic system. Climax: Recognition of the system’s effectiveness and efficiency. Happily Ever After: Sustainable and cost-effective orchard management. Graph-Neural-Network Approach for Force Fields (Quest) Goals: Develop accurate and extendible force fields for large organic molecules. Challenges: Accurately modeling complex interactions. Journey: Combining physics-driven potentials with neural network models. Teamwork: Collaboration between physicists, chemists, and data scientists. Trials: Extensive testing on different molecular sizes. Transformation: The approach proves to be robust and extendible. Setbacks: Refining the model for diverse chemical domains. Redemption: Improved predictions for new molecular systems. Success: Establishing a new standard for force field development. Homecoming: Adoption in scientific research and industry applications. ''') # Streamlit app import streamlit as st st.title("πŸ©ΊπŸ” Search Results") # Add Stories st.header("Discovery of Espaloma-0.3 (Hero's Journey) πŸ§™β€β™‚οΈ") st.markdown("1. **Ordinary World:** Traditional force fields struggle with flexibility and extensibility.") st.markdown("2. **Call to Adventure:** Researchers propose a new approach using graph neural networks.") # Continue story steps... st.header("Robotic Blossom Thinning (Rags to Riches) πŸ› οΈ") st.markdown("1. **Initial Wholeness:** Apple orchards rely heavily on manual labor.") # Continue story steps... st.header("Graph-Neural-Network Approach for Force Fields (Quest) πŸ•΅οΈβ€β™‚οΈ") st.markdown("1. **Goals:** Develop accurate and extendible force fields for large organic molecules.") # Continue story steps... # Display Search Results with a table st.write("### πŸ“… Summary of Search Results") import streamlit as st import pandas as pd import plotly.express as px from datetime import datetime # Load data @st.cache_data def load_data(): data = [ {"date": "08 Dec 2023", "title": "Machine-learned molecular mechanics force field for the simulation of protein-ligand systems and beyond", "authors": "Kenichiro Takaba, et al."}, {"date": "11 Apr 2023", "title": "Design, Integration, and Field Evaluation of a Robotic Blossom Thinning System for Tree Fruit Crops", "authors": "Uddhav Bhattarai, Qin Zhang, Manoj Karkee"}, {"date": "02 Jun 2021", "title": "An Extendible, Graph-Neural-Network-Based Approach for Accurate Force Field Development of Large Flexible Organic Molecules", "authors": "Xufei Wang, et al."}, {"date": "20 Jun 2023", "title": "CHGNet: Pretrained universal neural network potential for charge-informed atomistic modeling", "authors": "Bowen Deng, et al."}, {"date": "18 Apr 2022", "title": "End-to-End Differentiable Molecular Mechanics Force Field Construction", "authors": "Yuanqing Wang, et al."}, {"date": "30 Oct 2023", "title": "A Planning-and-Exploring Approach to Extreme-Mechanics Force Fields", "authors": "Pengjie Shi, Zhiping Xu"}, {"date": "15 Sep 2019", "title": "A Genetic Algorithm Enabled Similarity-Based Attack on Cancellable Biometrics", "authors": "Xingbo Dong, et al."}, {"date": "02 Jun 2021", "title": "Machine-Learning Non-Conservative Dynamics for New-Physics Detection", "authors": "Ziming Liu, et al."}, {"date": "15 Jun 2021", "title": "Graphical Gaussian Process Regression Model for Aqueous Solvation Free Energy Prediction of Organic Molecules in Redox Flow Battery", "authors": "Peiyuan Gao, et al."}, {"date": "08 Jun 2021", "title": "BIGDML: Towards Exact Machine Learning Force Fields for Materials", "authors": "Huziel E. Sauceda, et al."}, {"date": "26 Sep 2022", "title": "Learned Force Fields Are Ready For Ground State Catalyst Discovery", "authors": "Michael Schaarschmidt, et al."}, {"date": "08 Nov 2023", "title": "General Framework to Evaluate Unlinkability in Biometric Template Protection Systems", "authors": "Marta Gomez-Barrero, et al."}, {"date": "22 Jan 2023", "title": "Victoria Amazonica Optimization (VAO): An Algorithm Inspired by the Giant Water Lily Plant", "authors": "Seyed Muhammad Hossein Mousavi"}, {"date": "09 Dec 2019", "title": "Automated Fitting of Neural Network Potentials at Coupled Cluster Accuracy: Protonated Water Clusters as Testing Ground", "authors": "Christoph Schran, et al."}, {"date": "30 Oct 2022", "title": "Regimes of charged particle dynamics in current sheets: the machine learning approach", "authors": "Alexander Lukin, et al."}, {"date": "22 Feb 2023", "title": "Controllable Mechanical-domain Energy Accumulators", "authors": "Sung Y. Kim, David J. Braun"}, {"date": "02 Nov 2023", "title": "Investigating the Behavior of Diffusion Models for Accelerating Electronic Structure Calculations", "authors": "Daniel Rothchild, et al."}, {"date": "05 Jun 2023", "title": "Machine Learning Force Fields with Data Cost Aware Training", "authors": "Alexander Bukharin, et al."}, {"date": "23 Jan 2024", "title": "Force sensing to reconstruct potential energy landscapes for cluttered large obstacle traversal", "authors": "Yaqing Wang, et al."}, {"date": "06 Mar 2024", "title": "Beyond MD17: the reactive xxMD dataset", "authors": "Zihan Pengmei, et al."} ] df = pd.DataFrame(data) df['date'] = pd.to_datetime(df['date'], format='%d %b %Y') return df df = load_data() # Streamlit app st.title("πŸ§ͺ Force Field Research Explorer") # Sidebar st.sidebar.header("Filters") date_range = st.sidebar.date_input("Date Range", [df['date'].min(), df['date'].max()]) filtered_df = df[(df['date'] >= pd.Timestamp(date_range[0])) & (df['date'] <= pd.Timestamp(date_range[1]))] # Main content st.header("Research Papers Timeline") fig = px.timeline(filtered_df, x_start="date", y="title", color="authors", hover_name="title") fig.update_yaxes(autorange="reversed") st.plotly_chart(fig) st.header("Paper Details") selected_paper = st.selectbox("Select a paper", filtered_df['title']) paper_details = filtered_df[filtered_df['title'] == selected_paper].iloc[0] st.write(f"**Date:** {paper_details['date'].strftime('%d %b %Y')}") st.write(f"**Authors:** {paper_details['authors']}") st.write(f"**Title:** {paper_details['title']}") # Word cloud of paper titles from wordcloud import WordCloud import matplotlib.pyplot as plt st.header("Title Word Cloud") text = " ".join(title for title in filtered_df['title']) wordcloud = WordCloud(width=800, height=400, background_color='white').generate(text) fig, ax = plt.subplots(figsize=(10, 5)) ax.imshow(wordcloud, interpolation='bilinear') ax.axis('off') st.pyplot(fig) # Author network graph import networkx as nx st.header("Author Collaboration Network") G = nx.Graph() for _, row in filtered_df.iterrows(): authors = [author.strip() for author in row['authors'].split(',')] for i in range(len(authors)): for j in range(i+1, len(authors)): if G.has_edge(authors[i], authors[j]): G[authors[i]][authors[j]]['weight'] += 1 else: G.add_edge(authors[i], authors[j], weight=1) pos = nx.spring_layout(G) fig, ax = plt.subplots(figsize=(12, 8)) nx.draw(G, pos, with_labels=True, node_color='lightblue', node_size=1000, font_size=8, font_weight='bold') edge_labels = nx.get_edge_attributes(G, 'weight') nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels) st.pyplot(fig) # Topic modeling from sklearn.feature_extraction.text import CountVectorizer from sklearn.decomposition import LatentDirichletAllocation st.header("Topic Modeling") vectorizer = CountVectorizer(stop_words='english') doc_term_matrix = vectorizer.fit_transform(filtered_df['title']) LDA = LatentDirichletAllocation(n_components=5, random_state=42) LDA.fit(doc_term_matrix) topics = [] for idx, topic in enumerate(LDA.components_): top_words = [vectorizer.get_feature_names_out()[i] for i in topic.argsort()[:-10 - 1:-1]] topics.append(f"Topic {idx + 1}: {', '.join(top_words)}") for topic in topics: st.write(topic) st.header("Research Trends") year_counts = filtered_df.groupby(filtered_df['date'].dt.year).size().reset_index(name='count') fig = px.line(year_counts, x='date', y='count', title='Number of Papers per Year') st.plotly_chart(fig) # Footer st.markdown("---") st.write("Data last updated: March 2024")