from __future__ import annotations import os import pathlib import shlex import subprocess import tarfile if os.environ.get('SYSTEM') == 'spaces': subprocess.call(shlex.split('pip uninstall -y opencv-python')) subprocess.call(shlex.split('pip uninstall -y opencv-python-headless')) subprocess.call( shlex.split('pip install opencv-python-headless==4.5.5.64')) import gradio as gr import huggingface_hub import mediapipe as mp import numpy as np mp_drawing = mp.solutions.drawing_utils mp_drawing_styles = mp.solutions.drawing_styles mp_face_mesh = mp.solutions.face_mesh TITLE = 'MediaPipe Face Mesh' DESCRIPTION = 'https://google.github.io/mediapipe/' HF_TOKEN = os.getenv('HF_TOKEN') def load_sample_images() -> list[pathlib.Path]: image_dir = pathlib.Path('images') if not image_dir.exists(): image_dir.mkdir() dataset_repo = 'hysts/input-images' filenames = ['001.tar', '005.tar'] for name in filenames: path = huggingface_hub.hf_hub_download(dataset_repo, name, repo_type='dataset', use_auth_token=HF_TOKEN) with tarfile.open(path) as f: f.extractall(image_dir.as_posix()) return sorted(image_dir.rglob('*.jpg')) def run( image: np.ndarray, max_num_faces: int, min_detection_confidence: float, show_tesselation: bool, show_contours: bool, show_irises: bool, ) -> np.ndarray: with mp_face_mesh.FaceMesh( static_image_mode=True, max_num_faces=max_num_faces, refine_landmarks=True, min_detection_confidence=min_detection_confidence) as face_mesh: results = face_mesh.process(image) res = image[:, :, ::-1].copy() if results.multi_face_landmarks is not None: for face_landmarks in results.multi_face_landmarks: if show_tesselation: mp_drawing.draw_landmarks( image=res, landmark_list=face_landmarks, connections=mp_face_mesh.FACEMESH_TESSELATION, landmark_drawing_spec=None, connection_drawing_spec=mp_drawing_styles. get_default_face_mesh_tesselation_style()) if show_contours: mp_drawing.draw_landmarks( image=res, landmark_list=face_landmarks, connections=mp_face_mesh.FACEMESH_CONTOURS, landmark_drawing_spec=None, connection_drawing_spec=mp_drawing_styles. get_default_face_mesh_contours_style()) if show_irises: mp_drawing.draw_landmarks( image=res, landmark_list=face_landmarks, connections=mp_face_mesh.FACEMESH_IRISES, landmark_drawing_spec=None, connection_drawing_spec=mp_drawing_styles. get_default_face_mesh_iris_connections_style()) return res[:, :, ::-1] image_paths = load_sample_images() examples = [[path.as_posix(), 5, 0.5, True, True, True] for path in image_paths] gr.Interface( fn=run, inputs=[ gr.Image(label='Input', type='numpy'), gr.Slider(label='Max Number of Faces', minimum=0, maximum=10, step=1, value=5), gr.Slider(label='Minimum Detection Confidence', minimum=0, maximum=1, step=0.05, value=0.5), gr.Checkbox(label='Show Tesselation', value=True), gr.Checkbox(label='Show Contours', value=True), gr.Checkbox(label='Show Irises', value=True), ], outputs=gr.Image(label='Output', type='numpy'), examples=examples, title=TITLE, description=DESCRIPTION, ).launch(show_api=False)