File size: 3,743 Bytes
a255fdc
c43e925
a255fdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c43e925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a255fdc
 
 
c43e925
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import gradio as gr
import os
from transformers import pipeline
title = "Transformers 📗 Sentence to Paragraph ❤️ For Mindfulness"
examples = [
    ["Music and art make me feel"],
    ["Feel better each day when you awake by"],
    ["Feel better physically by"],
    ["Practicing mindfulness each day"],
    ["Be happier by"],
    ["Meditation can improve health"],
    ["Spending time outdoors"],
    ["Stress is relieved by quieting your mind, getting exercise and time with nature"],
    ["Break the cycle of stress and anxiety"],
    ["Feel calm in stressful situations"],
    ["Deal with work pressure"],
    ["Learn to reduce feelings of overwhelmed"]
]
from gradio import inputs
from gradio.inputs import Textbox
from gradio import outputs

# PersistDataset -----
import os
import csv
import gradio as gr
from gradio import inputs, outputs
import huggingface_hub
from huggingface_hub import Repository, hf_hub_download, upload_file
from datetime import datetime
DATASET_REPO_URL = "https://huggingface.co/datasets/awacke1/Carddata.csv"
DATASET_REPO_ID = "awacke1/Carddata.csv"
DATA_FILENAME = "Carddata.csv"
DATA_FILE = os.path.join("data", DATA_FILENAME)
HF_TOKEN = os.environ.get("HF_TOKEN")

SCRIPT = """
<script>
if (!window.hasBeenRun) {
    window.hasBeenRun = true;
    console.log("should only happen once");
    document.querySelector("button.submit").click();
}
</script>
"""

try:
    hf_hub_download(
        repo_id=DATASET_REPO_ID,
        filename=DATA_FILENAME,
        cache_dir=DATA_DIRNAME,
        force_filename=DATA_FILENAME
    )
except:
    print("file not found")
repo = Repository(
    local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)

def generate_html() -> str:
    with open(DATA_FILE) as csvfile:
        reader = csv.DictReader(csvfile)
        rows = []
        for row in reader:
            rows.append(row)
        rows.reverse()
        if len(rows) == 0:
            return "no messages yet"
        else:
            html = "<div class='chatbot'>"
            for row in rows:
                html += "<div>"
                html += f"<span>{row['inputs']}</span>"
                html += f"<span class='outputs'>{row['outputs']}</span>"
                html += "</div>"
            html += "</div>"
            return html
            
def store_message(name: str, message: str):
    if name and message:
        with open(DATA_FILE, "a") as csvfile:
            writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"])
            writer.writerow(
                {"name": name, "message": message, "time": str(datetime.now())}
            )
        commit_url = repo.push_to_hub()
    return ""
    
iface = gr.Interface(
    store_message,
    [
        inputs.Textbox(placeholder="Your name"),
        inputs.Textbox(placeholder="Your message", lines=2),
    ],
    "html",
    css="""
    .message {background-color:cornflowerblue;color:white; padding:4px;margin:4px;border-radius:4px; }
    """,
)

    #store_message(message, response) # Save to dataset
    
generator2 = gr.Interface.load("huggingface/EleutherAI/gpt-neo-2.7B")
generator3 = gr.Interface.load("huggingface/EleutherAI/gpt-j-6B")
generator1 = gr.Interface.load("huggingface/gpt2-large")
gr.Parallel(generator1, 
            generator2, 
            generator3, 
            inputs = gr.inputs.Textbox(lines=5, label="Enter a sentence to get another sentence."),
            examples=examples
            title="Mindfulness Story Generation with Persistent Dataset Memory",
            description=f"Mindfulness Story Generation with Persistent Dataset Memory",
            article=f"Memory Dataset URL: [{DATASET_REPO_URL}]({DATASET_REPO_URL})",
            ).launch(share=False)