Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
from transformers import pipeline | |
title = "❤️🧠MindfulStory📖💾MemoryMaker" | |
examples = [ | |
["Music and art make me feel"], | |
["Feel better each day when you awake by"], | |
["Feel better physically by"], | |
["Practicing mindfulness each day"], | |
["Be happier by"], | |
["Meditation can improve health"], | |
["Spending time outdoors"], | |
["Stress is relieved by quieting your mind, getting exercise and time with nature"], | |
["Break the cycle of stress and anxiety"], | |
["Feel calm in stressful situations"], | |
["Deal with work pressure"], | |
["Learn to reduce feelings of overwhelmed"] | |
] | |
from gradio import inputs | |
from gradio.inputs import Textbox | |
from gradio import outputs | |
# PersistDataset ----- | |
import os | |
import csv | |
import gradio as gr | |
from gradio import inputs, outputs | |
import huggingface_hub | |
from huggingface_hub import Repository, hf_hub_download, upload_file | |
from datetime import datetime | |
# created new dataset as awacke1/MindfulStory.csv | |
DATASET_REPO_URL = "https://huggingface.co/datasets/awacke1/MindfulStory.csv" | |
DATASET_REPO_ID = "awacke1/MindfulStory.csv" | |
DATA_FILENAME = "MindfulStory.csv" | |
DATA_FILE = os.path.join("data", DATA_FILENAME) | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
SCRIPT = """ | |
<script> | |
if (!window.hasBeenRun) { | |
window.hasBeenRun = true; | |
console.log("should only happen once"); | |
document.querySelector("button.submit").click(); | |
} | |
</script> | |
""" | |
# Download dataset repo using hub download | |
try: | |
hf_hub_download( | |
repo_id=DATASET_REPO_ID, | |
filename=DATA_FILENAME, | |
cache_dir=DATA_DIRNAME, | |
force_filename=DATA_FILENAME | |
) | |
except: | |
print("file not found") | |
# Set up cloned dataset from repo for operations | |
repo = Repository( | |
local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN | |
) | |
def generate_html() -> str: | |
with open(DATA_FILE) as csvfile: | |
reader = csv.DictReader(csvfile) | |
rows = [] | |
for row in reader: | |
rows.append(row) | |
rows.reverse() | |
if len(rows) == 0: | |
return "no messages yet" | |
else: | |
html = "<div class='chatbot'>" | |
for row in rows: | |
html += "<div>" | |
html += f"<span>{row['inputs']}</span>" | |
html += f"<span class='outputs'>{row['outputs']}</span>" | |
html += "</div>" | |
html += "</div>" | |
return html | |
def persist_memory(name: str, message: str): | |
if name and message: | |
with open(DATA_FILE, "a") as csvfile: | |
writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"]) | |
writer.writerow( | |
{"name": name, "message": message, "time": str(datetime.now())} | |
) | |
commit_url = repo.push_to_hub() | |
return "" | |
iface = gr.Interface( | |
persist_memory, | |
[ | |
inputs.Textbox(placeholder="Your name"), | |
inputs.Textbox(placeholder="Your message", lines=2), | |
], | |
"html", | |
css=""" | |
.message {background-color:cornflowerblue;color:white; padding:4px;margin:4px;border-radius:4px; } | |
""", | |
) | |
#store_message(message, response) # Save to dataset | |
#generator2 = gr.Interface.load("huggingface/EleutherAI/gpt-neo-2.7B", api_key=HF_TOKEN) | |
#generator3 = gr.Interface.load("huggingface/EleutherAI/gpt-j-6B", api_key=HF_TOKEN) | |
#generator1 = gr.Interface.load("huggingface/gpt2-large", api_key=HF_TOKEN) | |
#greeter_1 = gr.Interface(lambda name: f"Hello {name}!", inputs="textbox", outputs=gr.Textbox(label="Greeter 1")) | |
#greeter_2 = gr.Interface(lambda name: f"Greetings {name}!", inputs="textbox", outputs=gr.Textbox(label="Greeter 2")) | |
#demo = gr.Parallel(greeter_1, greeter_2) | |
generator1 = gr.Interface(lambda name: f"Hello {name}!", outputs=gr.Textbox(label="GPT2-Large")).load("huggingface/gpt2-large", api_key=HF_TOKEN) | |
generator2 = gr.Interface.load("huggingface/EleutherAI/gpt-neo-2.7B", api_key=HF_TOKEN) | |
generator3 = gr.Interface.load("huggingface/EleutherAI/gpt-j-6B", api_key=HF_TOKEN) | |
gr.Parallel(generator1, | |
generator2, | |
generator3, | |
inputs = gr.inputs.Textbox(lines=5, label="Enter a sentence to get another sentence."), | |
examples=examples, | |
title="Mindfulness Story Generation with Persistent Dataset Memory", | |
description=f"Mindfulness Story Generation with Persistent Dataset Memory", | |
article=f"Memory Dataset URL: [{DATASET_REPO_URL}]({DATASET_REPO_URL})" | |
).launch(share=False) |