import gradio as gr import os from transformers import pipeline title = "❤️🧠MindfulStory📖💾MemoryMaker" examples = [ ["Music and art make me feel"], ["Feel better each day when you awake by"], ["Feel better physically by"], ["Practicing mindfulness each day"], ["Be happier by"], ["Meditation can improve health"], ["Spending time outdoors"], ["Stress is relieved by quieting your mind, getting exercise and time with nature"], ["Break the cycle of stress and anxiety"], ["Feel calm in stressful situations"], ["Deal with work pressure"], ["Learn to reduce feelings of overwhelmed"] ] from gradio import inputs from gradio.inputs import Textbox from gradio import outputs # PersistDataset ----- import os import csv import gradio as gr from gradio import inputs, outputs import huggingface_hub from huggingface_hub import Repository, hf_hub_download, upload_file from datetime import datetime # created new dataset as awacke1/MindfulStory.csv DATASET_REPO_URL = "https://huggingface.co/datasets/awacke1/MindfulStory.csv" DATASET_REPO_ID = "awacke1/MindfulStory.csv" DATA_FILENAME = "MindfulStory.csv" DATA_FILE = os.path.join("data", DATA_FILENAME) HF_TOKEN = os.environ.get("HF_TOKEN") # Download dataset repo using hub download try: hf_hub_download( repo_id=DATASET_REPO_ID, filename=DATA_FILENAME, cache_dir=DATA_DIRNAME, force_filename=DATA_FILENAME ) except: print("file not found") # Set up cloned dataset from repo for operations repo = Repository( local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN ) generator1 = gr.Interface.load("huggingface/gpt2-large", api_key=HF_TOKEN) generator2 = gr.Interface.load("huggingface/EleutherAI/gpt-neo-2.7B", api_key=HF_TOKEN) generator3 = gr.Interface.load("huggingface/EleutherAI/gpt-j-6B", api_key=HF_TOKEN) SplitterInputBox = gr.inputs.Textbox(lines=5, label="Enter a sentence to get another sentence.") def AIMemory(name: str): if name and message: with open(DATA_FILE, "a") as csvfile: writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"]) writer.writerow({"name": name, "message": message, "time": str(datetime.now())}) commit_url = repo.push_to_hub() return message with open('Mindfulness.txt', 'r') as file: context = file.read() #parallelModel = gr.Parallel(generator1, generator2, generator3, parallelModel = gr.Parallel(generator1, generator2, generator3, #inputs = SplitterInputBox, inputs=[ #gr.inputs.Textbox(lines=7, default=context, label=""), gr.inputs.Textbox(lines=3, default=context, label="Story starter")], examples=examples, title="Mindfulness Story Generation with Persistent Dataset Memory", description=f"Mindfulness Story Generation with Persistent Dataset Memory", article=f"Memory Dataset URL: [{DATASET_REPO_URL}]({DATASET_REPO_URL})" ) parallelModel.launch(share=False)