File size: 4,962 Bytes
b820e2b
 
 
 
0e008da
b820e2b
 
 
 
0e008da
b820e2b
 
 
 
0e008da
b820e2b
 
 
 
0e008da
b820e2b
 
 
 
0e008da
b820e2b
 
 
 
0e008da
b820e2b
 
 
 
0e008da
b820e2b
 
 
 
0e008da
b820e2b
 
 
312c0b0
b820e2b
d5da4a8
 
b820e2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e008da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b820e2b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import streamlit as st

def triage_checkin():
    st.write("### Triage and Check-in Expert 🚑")
    for i in range(1, 4):
        st.text_input(f"Question {i} for Triage")

def lab_analyst():
    st.write("### Lab Analyst 🧪")
    for i in range(1, 4):
        st.text_input(f"Question {i} for Lab Analysis")

def medicine_specialist():
    st.write("### Medicine Specialist 💊")
    for i in range(1, 4):
        st.text_input(f"Question {i} for Medicine")

def service_expert():
    st.write("### Service Expert 💲")
    for i in range(1, 4):
        st.text_input(f"Question {i} for Service")

def care_expert():
    st.write("### Level of Care Expert 🏥")
    for i in range(1, 4):
        st.text_input(f"Question {i} for Level of Care")

def terminology_expert():
    st.write("### Terminology Expert 📚")
    for i in range(1, 4):
        st.text_input(f"Question {i} for Terminology")

def cmo():
    st.write("### Chief Medical Officer 🩺")
    for i in range(1, 4):
        st.text_input(f"Question {i} for CMO")

def medical_director():
    st.write("### Medical Director Team 🏢")
    for i in range(1, 4):
        st.text_input(f"Question {i} for Medical Director")

def main():
    st.title("10🎓MoE🚑Medical Mixture of Experts Model")
    st.write("Harness the power of AI with this specialized healthcare framework! 🎉")
    st.write("#### In LLM Multi System Agents, we define a set of eight roles for achieving a mission, then benchmark performance across LLMs to find datasets with need alignment.")
    st.markdown("#### MTBench: https://huggingface.co/spaces/awacke1/MTBenchmarkForChatGPTMetricsScoring")

    role = st.selectbox("Select AI Role:", [
        "Triage and Check-in Expert",
        "Lab Analyst",
        "Medicine Specialist",
        "Service Expert",
        "Level of Care Expert",
        "Terminology Expert",
        "Chief Medical Officer",
        "Medical Director Team"
    ])

    if role == "Triage and Check-in Expert":
        triage_checkin()
    elif role == "Lab Analyst":
        lab_analyst()
    elif role == "Medicine Specialist":
        medicine_specialist()
    elif role == "Service Expert":
        service_expert()
    elif role == "Level of Care Expert":
        care_expert()
    elif role == "Terminology Expert":
        terminology_expert()
    elif role == "Chief Medical Officer":
        cmo()
    elif role == "Medical Director Team":
        medical_director()
    
    # Define Roles and their Descriptions
    roles = {
        "1. Coder": "💻 Creates short python code functions to solve tasks.",
        "2. Humanities Expert": "📚 Focuses on arts, literature, history, and other humanities subjects.",
        "3. Analyst": "🤔 Analyzes situations and provides logical solutions.",
        "4. Roleplay Expert": "🎭 Specialized in mimicking behaviors or characters.",
        "5. Mathematician": "➗ Solves mathematical problems with precision.",
        "6. STEM Expert": "🔬 Specialized in Science, Technology, Engineering, and Mathematics tasks.",
        "7. Extraction Expert": "🔍 Strictly sticks to facts and extracts concise information.",
        "8. Drafter": "📝 Exhibits expertise in generating textual content and narratives.",
    }
    
    # Streamlit UI
    st.title("AI Role Selector - CHARMSED 🤖✨")
    st.markdown("""
    ### Harness the power of AI with the CHARMSED framework. 
    #### This suite of roles brings together a comprehensive set of AI capabilities, tailored for diverse tasks:
    - **C**oder 💻: Craft pythonic solutions with precision.
    - **H**umanities Expert 📚: Dive deep into arts, literature, and history.
    - **A**nalyst 🤔: Derive insights through logical reasoning.
    - **R**oleplay Expert 🎭: Mimic behaviors or adopt personas for engaging interactions.
    - **M**athematician ➗: Crunch numbers and solve mathematical enigmas.
    - **S**TEM Expert 🔬: Navigate through the realms of Science, Technology, Engineering, and Mathematics.
    - **E**xtraction Expert 🔍: Extract concise information with a laser-focus.
    - **D**rafter 📝: Generate textual content and narratives with flair.
    Empower your tasks with the perfect AI role and unleash the magic of CHARMSED!
    """)
    
    # Dropdown to select role
    selected_role = st.selectbox("Select AI Role:", list(roles.keys()))
    
    # Display the description of the selected role
    st.write(roles[selected_role])
    
    # Switch to choose between two models
    model = st.radio("Choose Model:", ["model_1", "model_2"])
    
    # Text area for user input
    user_input = st.text_area("Provide your task/question:")
    
    # Button to execute
    if st.button("Execute"):
        # Here, you would add code to get the AI response based on the selected role and model.
        # For now, just echoing the user input.
        st.write(f"You said: {user_input}")

if __name__ == "__main__":
    main()