import os import streamlit as st from dotenv import load_dotenv from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from htmlTemplates import css, bot_template, user_template def extract_text_from_pdfs(pdf_docs): text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text def split_text_into_chunks(text): text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len) return text_splitter.split_text(text) def create_vector_store_from_text_chunks(text_chunks): key = os.getenv('OPENAI_KEY') embeddings = OpenAIEmbeddings(openai_api_key=key) return FAISS.from_texts(texts=text_chunks, embedding=embeddings) def create_conversation_chain(vectorstore): llm = ChatOpenAI() memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory) def process_user_input(user_question): response = st.session_state.conversation({'question': user_question}) st.session_state.chat_history = response['chat_history'] for i, message in enumerate(st.session_state.chat_history): template = user_template if i % 2 == 0 else bot_template st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True) def main(): load_dotenv() st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:") st.write(css, unsafe_allow_html=True) st.header("Chat with multiple PDFs :books:") user_question = st.text_input("Ask a question about your documents:") if user_question: process_user_input(user_question) with st.sidebar: st.subheader("Your documents") pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=True) if st.button("Process"): with st.spinner("Processing"): raw_text = extract_text_from_pdfs(pdf_docs) text_chunks = split_text_into_chunks(raw_text) vectorstore = create_vector_store_from_text_chunks(text_chunks) st.session_state.conversation = create_conversation_chain(vectorstore) if __name__ == '__main__': main()