File size: 6,662 Bytes
4f0cb74
 
1887ea3
 
 
4f0cb74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1887ea3
4f0cb74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1887ea3
 
 
 
 
 
 
 
 
 
 
 
4f0cb74
1887ea3
4f0cb74
 
 
 
 
 
 
1887ea3
 
 
 
4f0cb74
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import streamlit as st
import json
import time
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource

urls = [
    "https://huggingface.co/spaces/awacke1/CB-GR-Chatbot-Blenderbot",
    "https://huggingface.co/spaces/awacke1/TTS-STT-Blocks",
    "https://huggingface.co/spaces/awacke1/Prompt-Refinery-Text-to-Image-Generation",
    "https://huggingface.co/spaces/awacke1/Video-Summary",
    "https://huggingface.co/spaces/awacke1/AI-MovieMaker-Comedy",
    "https://huggingface.co/spaces/awacke1/ChatGPT-Memory-Chat-Story-Generator",
    "https://huggingface.co/spaces/awacke1/CloneAnyVoice",
    "https://huggingface.co/spaces/awacke1/ChatGPT-Streamlit-2",
    "https://huggingface.co/spaces/awacke1/WikipediaUltimateAISearch",
    "https://huggingface.co/spaces/awacke1/RLHF.Cognitive.Episodic.Semantic.Memory",
    "https://huggingface.co/spaces/awacke1/Memory-Shared",
    "https://huggingface.co/spaces/awacke1/VideoSwap",
    "https://huggingface.co/spaces/awacke1/AI-Wikipedia-Search",
    "https://huggingface.co/spaces/awacke1/AutoMLUsingStreamlit-Plotly",
    "https://huggingface.co/spaces/awacke1/NLP-Lyric-Chorus-Image",
    "https://huggingface.co/spaces/awacke1/OpenAssistant-Chatbot-FTW-Open-Source",
    "https://huggingface.co/spaces/awacke1/ChatGPTStreamlit7",
    "https://huggingface.co/spaces/awacke1/MultiPDF-QA-ChatGPT-Langchain",
    "https://huggingface.co/spaces/awacke1/SOTA-Plan",
    "https://huggingface.co/spaces/awacke1/AIandSmartTools",
    "https://huggingface.co/spaces/awacke1/3DVirtualFood",
    "https://huggingface.co/spaces/awacke1/Gradio-Gallery-Health-Medical-Icon-Sets",
    "https://huggingface.co/spaces/awacke1/DatasetAnalyzer",
    "https://huggingface.co/spaces/awacke1/PrompTart",
    "https://huggingface.co/spaces/awacke1/sileod-deberta-v3-base-tasksource-nli",
    "https://huggingface.co/spaces/awacke1/File-Memory-Operations-Human-Feedback-Gradio",
    "https://huggingface.co/spaces/awacke1/Bloom.Big.Science.Continual.Generator",
    "https://huggingface.co/spaces/awacke1/Ontology-Gradio",
    "https://huggingface.co/spaces/awacke1/HTML5-Aframe-3dMap-Flight",
    "https://huggingface.co/spaces/awacke1/Bloom.Generative.Writer",
    "https://huggingface.co/spaces/awacke1/Voice-ChatGPT-Streamlit-12",
    "https://huggingface.co/spaces/awacke1/HTML5-AR-VR",
    "https://huggingface.co/spaces/awacke1/AnimationAI",
    "https://huggingface.co/spaces/awacke1/GenerativeWordsandImages",
    "https://huggingface.co/spaces/awacke1/AR-VR-IOT-Demo",
    "https://huggingface.co/spaces/awacke1/ArtStyleFoodsandNutrition",
    "https://huggingface.co/spaces/awacke1/CarePlanQnAWithContext",
    "https://huggingface.co/spaces/awacke1/VideoSummaryYoutube3",
    "https://huggingface.co/spaces/awacke1/AW-01ST-CSV-Dataset-Analyzer",
    "https://huggingface.co/spaces/awacke1/Try.Playing.Learning.Sharing.On.This",
    "https://huggingface.co/spaces/awacke1/google-flan-t5-base",
    "https://huggingface.co/spaces/awacke1/PubMed-Parrot-Paraphraser-on-T5",
    "https://huggingface.co/spaces/awacke1/Writing-Grammar-And-Paraphrase-w-Pegasus",
    "https://huggingface.co/spaces/awacke1/runwayml-stable-diffusion-v1-5",
    "https://huggingface.co/spaces/awacke1/DockerGoFlanT5",
    "https://huggingface.co/spaces/awacke1/GradioContinualGenerator",
    "https://huggingface.co/spaces/awacke1/StreamlitSuperPowerCheatSheet"
]

# Extract the last part of each URL (after the last '/') to serve as the name of the button
url_names = [url.split('/')[-1] for url in urls]

# Associate each URL with a relevant emoji based on keywords in its name
emoji_mapping = {
    "Chatbot": "πŸ€–",
    "TTS": "πŸ—£οΈ",
    "STT": "πŸ‘‚",
    "Video": "πŸŽ₯",
    "MovieMaker": "🍿",
    "ChatGPT": "πŸ’¬",
    "Voice": "πŸŽ™οΈ",
    "Wikipedia": "πŸ“–",
    "Memory": "🧠",
    "AI": "🧠",
    "OpenAssistant": "🀝",
    "3D": "πŸ•ΆοΈ",
    "AR": "πŸ‘“",
    "VR": "πŸ•ΆοΈ",
    "Animation": "πŸ–ŒοΈ",
    "Dataset": "πŸ“Š",
    "Gradio": "πŸ“»",
    "HTML5": "🌐",
    "Writing": "✍️",
    "Grammar": "πŸ–‹οΈ",
    "Paraphrase": "πŸ”„",
    "Streamlit": "🌠"
}

def get_emoji(name):
    for key, emoji in emoji_mapping.items():
        if key in name:
            return emoji
    return "πŸ”—"

def load_votes():
    try:
        with open("votes.json", "r") as f:
            return json.load(f)
    except FileNotFoundError:
        return {url: 0 for url in urls}

def save_votes(votes):
    with open("votes.json", "w") as f:
        json.dump(votes, f)

def main():
    st.set_page_config(layout="wide")
    
    if 'current_url' not in st.session_state:
        st.session_state.current_url = None

    votes = load_votes()
    
    col1, col2 = st.columns([1, 2])
    
    with col1:
        items = [{"url": url, "name": url.split('/')[-1], 
                 "emoji": get_emoji(url.split('/')[-1]), 
                 "votes": votes[url]} for url in urls]
        items.sort(key=lambda x: (-x["votes"], x["name"]))
        
        button_cols = st.columns(2)
        for i, item in enumerate(items):
            with button_cols[i % 2]:
                if st.button(f"{item['emoji']} {item['name']}", key=item['url']):
                    votes[item['url']] += 1
                    save_votes(votes)
                    st.session_state.current_url = item['url']
                    st.rerun()
                st.write(f"Votes: {item['votes']}")

    with col2:
        if st.session_state.current_url:
            html_string = f"""
            <div style="width:100%; height:800px; overflow:hidden;">
                <iframe src="{st.session_state.current_url}"
                        width="100%"
                        height="100%"
                        frameborder="0"
                        scrolling="yes"
                        style="border: 1px solid #ddd;">
                </iframe>
            </div>
            """
            st.components.v1.html(html_string, height=800)
        else:
            st.info("Select an app to view")

    if any(votes.values()):
        with col1:
            source = ColumnDataSource({
                'names': [i["name"] for i in items if votes[i["url"]] > 0],
                'votes': [i["votes"] for i in items if votes[i["url"]] > 0]
            })
            p = figure(x_range=source.data['names'], 
                      height=250, 
                      title="Vote Counts",
                      toolbar_location=None)
            p.vbar(x='names', top='votes', width=0.9, source=source)
            p.xaxis.major_label_orientation = 1.2
            st.bokeh_chart(p)

if __name__ == "__main__":
    main()