#import streamlit as st import gradio as gr import os import csv import time # Image Classification Using Torch: import requests from PIL import Image from torchvision import transforms # Download human-readable labels for ImageNet. response = requests.get("https://git.io/JJkYN") labels = response.text.split("\n") def predict(inp): inp = transforms.ToTensor()(inp).unsqueeze(0) with torch.no_grad(): prediction = torch.nn.functional.softmax(model(inp)[0], dim=0) confidences = {labels[i]: float(prediction[i]) for i in range(1000)} return confidences import gradio as gr interface1=gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs=gr.Label(num_top_classes=3), examples=["lion.jpg", "cheetah.jpg"]) # Image Classification Using VIT - Vision Image Transformers Architecture import gradio as gr interface2=gr.Interface.load( "huggingface/google/vit-base-patch16-224", examples=["alligator.jpg", "laptop.jpg"]) # ONNX Model Zoo: gr.Markdown(""" https://github.com/onnx/models """) interface1.launch() interface2.launch() uploaded_images = {'characters': {}, 'terrain': {}} def get_image_path(img, name, image_type): file_path = f"data/uploadedImages/{image_type}/{name}/{img.name}" os.makedirs(os.path.dirname(file_path), exist_ok=True) with open(file_path, "wb") as img_file: img_file.write(img.getbuffer()) return file_path def update_csv_file(uploaded_file, name, image_type): csv_file_path = "Resources.csv" with open(csv_file_path, mode='a', newline='') as csv_file: csv_writer = csv.writer(csv_file) csv_writer.writerow([name, uploaded_file.name, image_type]) def get_uploaded_files_info(): csv_file_path = "Resources.csv" with open(csv_file_path, mode='r') as csv_file: csv_reader = csv.reader(csv_file) files_info = [] for row in csv_reader: files_info.append(row) return files_info def display_images_from_csv(): files_info = get_uploaded_files_info() for row in files_info: if row[2] == 'characters': img_path = f"data/uploadedImages/{row[2]}/{row[0]}/{row[1]}" #st.sidebar.image(img_path, width=100, caption=row[0]) else: img_path = f"data/uploadedImages/{row[2]}/{row[0]}/{row[1]}" #st.image(img_path, width=100, caption=row[0]) # Rewrite for gradio #image_type = gr.selectbox('Choose image type:', options=['characters', 'terrain']) #name = gr.text_input('Enter a name for the image:') #uploaded_files = gr.file_uploader('Upload image(s)', type=['png', 'jpg'], accept_multiple_files=True) for uploaded_file in uploaded_files: if uploaded_file is not None: # Get actual image file bytes_data = get_image_path(uploaded_file, name, image_type) uploaded_images[image_type].setdefault(name, []) uploaded_images[image_type][name].append(bytes_data) # Rewrite for gradio #gr.image(bytes_data, use_column_width=True) gr.Markdown(image_type) gr.Markdown(name) update_csv_file(uploaded_file, name, image_type) if image_type == 'characters': if uploaded_images['characters']: # Rewrite for gradio # gr.sidebar.write('**Characters**') for name, files in uploaded_images['characters'].items(): for file in files: gr.Markdown(""" """) gr.Markdown(name) gr.Markdown(file) # Rewrite for gradio #gr.sidebar.image(file, width=100, caption=name) else: if uploaded_images['terrain']: #st.write('**Terrain**') gr.Markdown("**Terrain**") row = [] for name, files in uploaded_images['terrain'].items(): for file in files: row.append(file) if len(row) == 3: # Rewrite for gradio #gr.image(row, width=100 * 3) row = [] if row: # Rewrite for gradio #gr.image(row, width=100 * len(row)) # Last row, if not complete gr.Markdown(row) while True: time.sleep(20) # Rewrite for gradio #gr.empty() display_images_from_csv()