File size: 1,893 Bytes
506e4bb
d4693e1
528a3b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
506e4bb
 
bd6bfc3
506e4bb
bd6bfc3
506e4bb
bd6bfc3
506e4bb
bd6bfc3
506e4bb
 
 
 
d1c3bb2
506e4bb
d1c3bb2
506e4bb
d1c3bb2
506e4bb
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import gradio as gr
import os

# PersistDataset -----
import os
import csv
import gradio as gr
from gradio import inputs, outputs
import huggingface_hub
from huggingface_hub import Repository, hf_hub_download, upload_file
from datetime import datetime

# created new dataset as awacke1/MindfulStory.csv
DATASET_REPO_URL = "https://huggingface.co/datasets/awacke1/MindfulStory.csv"
DATASET_REPO_ID = "awacke1/MindfulStory.csv"
DATA_FILENAME = "MindfulStory.csv"
DATA_FILE = os.path.join("data", DATA_FILENAME)
HF_TOKEN = os.environ.get("HF_TOKEN")
# Download dataset repo using hub download
try:
    hf_hub_download(
        repo_id=DATASET_REPO_ID,
        filename=DATA_FILENAME,
        cache_dir=DATA_DIRNAME,
        force_filename=DATA_FILENAME
    )
except:
    print("file not found")
    
def AIMemory(name: str, message: str):
    if name and message:
        with open(DATA_FILE, "a") as csvfile:
            writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"])
            writer.writerow({"name": name, "message": message, "time": str(datetime.now())})
        commit_url = repo.push_to_hub()
    return {"name": name, "message": message, "time": str(datetime.now())}

with open('Mindfulness.txt', 'r') as file:
        context = file.read()
   
# Set up cloned dataset from repo for operations
repo = Repository(
    local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)

def calculator(text1, operation, text2):
    if operation == "add":
        return text1 + text2
    elif operation == "subtract":
        return text1 - text2
    elif operation == "multiply":
        return text1 * text2
    elif operation == "divide":
        return text1 / text2

demo = gr.Interface(
    calculator,
    [
        "text",
        gr.Radio(["add", "subtract", "multiply", "divide"]),
        "text"
    ],
    "text",
    live=True,
)
demo.launch()