File size: 10,361 Bytes
57b3cfe
 
d19c729
ed6a27c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d19c729
ed6a27c
 
 
 
 
 
 
 
 
 
 
 
d19c729
ed6a27c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d19c729
ed6a27c
 
57b3cfe
 
ed6a27c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import streamlit as st

def create_animation_app():
    st.title("Bouncing Yellow Balls & Jellyfish in a Rotating Sphere")
    # We embed an HTML document that includes:
    # 1. p5.js (from a CDN)
    # 2. a container div for our canvas
    # 3. our p5.js sketch that simulates 100 bouncing yellow balls with collision detection
    #    and one bouncing jellyfish (using a spiral drawing similar to your jellyfish code)
    #    all inside a sphere (drawn as a circle) that slowly rotates.
    html_code = r"""
    <!DOCTYPE html>
    <html>
      <head>
        <meta charset="UTF-8">
        <!-- Include p5.js from a CDN -->
        <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/1.6.0/p5.min.js"></script>
        <style>
          /* Remove default margins & center the canvas */
          body {
            margin: 0;
            padding: 0;
            overflow: hidden;
            background: black;
          }
          #p5-container {
            display: flex;
            justify-content: center;
            align-items: center;
          }
        </style>
      </head>
      <body>
        <div id="p5-container"></div>
        <script>
          // --- Global Variables ---
          let balls = [];
          let jellyfish;
          const sphereRadius = 300;  // radius of the bounding sphere
          let sphereCenter;
          let rotationAngle = 0;
          const numBalls = 100;
          
          // --- p5.js Setup ---
          function setup() {
            // Create an 800x800 canvas and attach it to our container
            let canvas = createCanvas(800, 800);
            canvas.parent('p5-container');
            sphereCenter = createVector(width/2, height/2);
            
            // Set color mode to HSB for our jellyfish drawing.
            colorMode(HSB, 360, 100, 100, 1);
            
            // Create 100 balls. Each ball is given a random position (inside the sphere)
            // and a random velocity.
            for (let i = 0; i < numBalls; i++) {
              balls.push(new Ball());
            }
            
            // Create one jellyfish object. (Its drawn “shape” is produced by the jellyA() and getJellyColor() functions below.)
            jellyfish = new Jellyfish();
          }
          
          // --- p5.js Draw Loop ---
          function draw() {
            // Create a fade/trail effect by drawing a semi-transparent black background.
            // (Note: using HSB mode so black is 0 saturation and 0 brightness.)
            background(0, 0, 0, 0.1);
            
            // Increment our rotation angle very slowly.
            rotationAngle += 0.005;
            
            // All drawing and physics is done in a coordinate system with origin at sphereCenter.
            push();
            translate(sphereCenter.x, sphereCenter.y);
            // Slowly rotate the entire coordinate system.
            rotate(rotationAngle);
            
            // Draw the bounding sphere (a circle)
            noFill();
            stroke(255);
            strokeWeight(2);
            ellipse(0, 0, sphereRadius * 2, sphereRadius * 2);
            
            // --- Update Physics ---
            // 1. Update positions for all balls and the jellyfish.
            for (let ball of balls) {
              ball.update();
            }
            jellyfish.update();
            
            // 2. Check and resolve ball-ball collisions.
            for (let i = 0; i < balls.length; i++) {
              for (let j = i + 1; j < balls.length; j++) {
                balls[i].collide(balls[j]);
              }
            }
            
            // 3. Check each ball for collisions with the sphere boundary and display them.
            for (let ball of balls) {
              ball.checkBoundaryCollision();
              ball.display();
            }
            
            // 4. Check the jellyfish for sphere collisions and display it.
            jellyfish.checkBoundaryCollision();
            jellyfish.display();
            
            pop();
          }
          
          // --- Ball Class ---
          class Ball {
            constructor() {
              this.r = 5;  // radius of the ball
              // Random position inside the sphere (by picking a random angle and radius)
              let angle = random(TWO_PI);
              let rad = random(sphereRadius - this.r);
              this.pos = createVector(rad * cos(angle), rad * sin(angle));
              // Random speed and direction
              let speed = random(1, 3);
              let vAngle = random(TWO_PI);
              this.vel = createVector(speed * cos(vAngle), speed * sin(vAngle));
              // Yellow color in HSB (hue=60, saturation=100, brightness=100)
              this.col = color(60, 100, 100);
            }
            
            update() {
              this.pos.add(this.vel);
            }
            
            // Check for collision with the circular (spherical) boundary.
            checkBoundaryCollision() {
              let d = this.pos.mag();
              if (d + this.r > sphereRadius) {
                // Compute the normal (pointing outward)
                let normal = this.pos.copy().normalize();
                // Reflect the velocity: v = v - 2*(v·normal)*normal
                let dot = this.vel.dot(normal);
                this.vel.sub(p5.Vector.mult(normal, 2 * dot));
                // Ensure the ball is repositioned just inside the boundary.
                this.pos = normal.mult(sphereRadius - this.r);
              }
            }
            
            // Check for collisions with another ball (elastic collision for equal masses)
            collide(other) {
              let diff = p5.Vector.sub(other.pos, this.pos);
              let distBetween = diff.mag();
              if (distBetween < this.r + other.r) {
                // Separate the overlapping balls by moving them apart equally.
                let overlap = (this.r + other.r) - distBetween;
                let displacement = diff.copy().normalize().mult(overlap / 2);
                this.pos.sub(displacement);
                other.pos.add(displacement);
                
                // Compute collision response
                let normal = diff.copy().normalize();
                let relativeVelocity = p5.Vector.sub(this.vel, other.vel);
                let dotProd = relativeVelocity.dot(normal);
                // Only resolve if balls are moving toward each other.
                if (dotProd > 0) {
                  // For equal masses, exchange the velocity components along the collision normal.
                  let impulse = normal.copy().mult(dotProd);
                  this.vel.sub(impulse);
                  other.vel.add(impulse);
                }
              }
            }
            
            display() {
              noStroke();
              fill(this.col);
              ellipse(this.pos.x, this.pos.y, this.r * 2, this.r * 2);
            }
          }
          
          // --- Jellyfish Class ---
          class Jellyfish {
            constructor() {
              // For the jellyfish we choose a larger effective “radius” (for collision) of about 40.
              this.size = 40;
              // Start at a random position inside the sphere (with a margin)
              this.pos = createVector(random(-sphereRadius + this.size, sphereRadius - this.size),
                                      random(-sphereRadius + this.size, sphereRadius - this.size));
              // Give it a random velocity.
              let speed = random(1, 2);
              let angle = random(TWO_PI);
              this.vel = createVector(speed * cos(angle), speed * sin(angle));
              // A time parameter used in the jellyfish drawing.
              this.t = 0;
            }
            
            update() {
              this.pos.add(this.vel);
              this.t += 0.05;
            }
            
            // Bounce off the sphere boundary using a simple circular collision.
            checkBoundaryCollision() {
              if (this.pos.mag() + this.size > sphereRadius) {
                let normal = this.pos.copy().normalize();
                let dot = this.vel.dot(normal);
                this.vel.sub(p5.Vector.mult(normal, 2 * dot));
                this.pos = normal.mult(sphereRadius - this.size);
              }
            }
            
            display() {
              push();
              translate(this.pos.x, this.pos.y);
              // Draw the jellyfish using a grid of points computed by the jellyA() function.
              // (We subtract 200 from the computed positions so that the drawing is centered.)
              strokeWeight(1.5);
              for (let y = 99; y < 300; y += 4) {
                for (let x = 99; x < 300; x += 2) {
                  let res = jellyA(x, y, this.t);
                  let px = res[0] - 200;
                  let py = res[1] - 200;
                  stroke(getJellyColor(x, y, this.t));
                  point(px, py);
                }
              }
              pop();
            }
          }
          
          // --- Jellyfish Drawing Functions ---
          // Replicate the provided jellyfish “a(x,y)” function.
          function jellyA(x, y, t) {
            let k = x / 8 - 25;
            let e = y / 8 - 25;
            // d is computed as (k^2+e^2)/99
            let d = (k * k + e * e) / 99;
            let q = x / 3 + k * 0.5 / cos(y * 5) * sin(d * d - t);
            let c = d / 2 - t / 8;
            let xPos = q * sin(c) + e * sin(d + k - t) + 200;
            let yPos = (q + y / 8 + d * 9) * cos(c) + 200;
            return [xPos, yPos];
          }
          
          // Replicate the provided getColor function for the jellyfish.
          function getJellyColor(x, y, t) {
            let hue = (sin(t / 2) * 360 + x / 3 + y / 3) % 360;
            let saturation = 70 + sin(t) * 30;
            let brightness = 50 + cos(t / 2) * 20;
            return color(hue, saturation, brightness, 0.5);
          }
        </script>
      </body>
    </html>
    """
    # The height is set to 800px; adjust if needed.
    st.components.v1.html(html_code, height=820, scrolling=False)

if __name__ == "__main__":
    create_animation_app()