Update app.py
Browse files
app.py
CHANGED
|
@@ -1,115 +1,939 @@
|
|
| 1 |
-
|
| 2 |
-
import streamlit as st
|
| 3 |
import os
|
| 4 |
-
import
|
| 5 |
import base64
|
| 6 |
-
import
|
| 7 |
-
import
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
from reportlab.pdfgen import canvas
|
| 12 |
from reportlab.lib.utils import ImageReader
|
| 13 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
# ---
|
| 16 |
st.set_page_config(
|
| 17 |
-
page_title="Vision & Layout Titans
|
| 18 |
page_icon="π€",
|
| 19 |
-
layout="wide"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
)
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
# --- Helper Functions ---
|
| 23 |
-
def
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
for
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
})
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
st.
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import io
|
|
|
|
| 2 |
import os
|
| 3 |
+
import re
|
| 4 |
import base64
|
| 5 |
+
import glob
|
| 6 |
+
import logging
|
| 7 |
+
import random
|
| 8 |
+
import shutil
|
| 9 |
+
import time
|
| 10 |
+
import zipfile
|
| 11 |
+
import json
|
| 12 |
+
import asyncio
|
| 13 |
+
import aiofiles
|
| 14 |
+
import toml
|
| 15 |
from datetime import datetime
|
| 16 |
+
from collections import Counter
|
| 17 |
+
from dataclasses import dataclass, field
|
| 18 |
+
from io import BytesIO
|
| 19 |
+
from typing import Optional, List, Dict, Any
|
| 20 |
+
import pandas as pd
|
| 21 |
+
import pytz
|
| 22 |
+
import streamlit as st
|
| 23 |
+
from PIL import Image, ImageDraw
|
| 24 |
from reportlab.pdfgen import canvas
|
| 25 |
from reportlab.lib.utils import ImageReader
|
| 26 |
+
from reportlab.lib.pagesizes import letter
|
| 27 |
+
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, PageBreak
|
| 28 |
+
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
| 29 |
+
from reportlab.lib.enums import TA_JUSTIFY
|
| 30 |
+
import fitz
|
| 31 |
+
import requests
|
| 32 |
+
try:
|
| 33 |
+
import torch
|
| 34 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, AutoModelForVision2Seq, pipeline
|
| 35 |
+
_transformers_available = True
|
| 36 |
+
except ImportError:
|
| 37 |
+
_transformers_available = False
|
| 38 |
+
st.sidebar.warning("AI/ML libraries (torch, transformers) not found. Local model features disabled.")
|
| 39 |
+
try:
|
| 40 |
+
from diffusers import StableDiffusionPipeline
|
| 41 |
+
_diffusers_available = True
|
| 42 |
+
except ImportError:
|
| 43 |
+
_diffusers_available = False
|
| 44 |
+
if _transformers_available:
|
| 45 |
+
st.sidebar.warning("Diffusers library not found. Diffusion model features disabled.")
|
| 46 |
+
try:
|
| 47 |
+
from openai import OpenAI
|
| 48 |
+
_openai_available = True
|
| 49 |
+
except ImportError:
|
| 50 |
+
_openai_available = False
|
| 51 |
+
st.sidebar.warning("OpenAI library not found. OpenAI model features disabled.")
|
| 52 |
+
from huggingface_hub import InferenceClient, HfApi, list_models
|
| 53 |
+
from huggingface_hub.utils import RepositoryNotFoundError, GatedRepoError
|
| 54 |
|
| 55 |
+
# --- App Configuration ---
|
| 56 |
st.set_page_config(
|
| 57 |
+
page_title="Vision & Layout Titans ππΌοΈ",
|
| 58 |
page_icon="π€",
|
| 59 |
+
layout="wide",
|
| 60 |
+
initial_sidebar_state="expanded",
|
| 61 |
+
menu_items={
|
| 62 |
+
'Get Help': 'https://huggingface.co/docs',
|
| 63 |
+
'Report a Bug': None,
|
| 64 |
+
'About': "Combined App: Image/MD->PDF Layout + AI-Powered Tools π"
|
| 65 |
+
}
|
| 66 |
)
|
| 67 |
|
| 68 |
+
# --- Secrets Management ---
|
| 69 |
+
try:
|
| 70 |
+
secrets = toml.load(".streamlit/secrets.toml") if os.path.exists(".streamlit/secrets.toml") else {}
|
| 71 |
+
HF_TOKEN = secrets.get("HF_TOKEN", os.getenv("HF_TOKEN", ""))
|
| 72 |
+
OPENAI_API_KEY = secrets.get("OPENAI_API_KEY", os.getenv("OPENAI_API_KEY", ""))
|
| 73 |
+
except Exception as e:
|
| 74 |
+
st.error(f"Error loading secrets: {e}")
|
| 75 |
+
HF_TOKEN = os.getenv("HF_TOKEN", "")
|
| 76 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
|
| 77 |
+
|
| 78 |
+
if not HF_TOKEN:
|
| 79 |
+
st.sidebar.warning("Hugging Face token not found in secrets or environment. Some features may be limited.")
|
| 80 |
+
if not OPENAI_API_KEY and _openai_available:
|
| 81 |
+
st.sidebar.warning("OpenAI API key not found in secrets or environment. OpenAI features disabled.")
|
| 82 |
+
|
| 83 |
+
# --- Logging Setup ---
|
| 84 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 85 |
+
logger = logging.getLogger(__name__)
|
| 86 |
+
log_records = []
|
| 87 |
+
class LogCaptureHandler(logging.Handler):
|
| 88 |
+
def emit(self, record):
|
| 89 |
+
log_records.append(record)
|
| 90 |
+
logger.addHandler(LogCaptureHandler())
|
| 91 |
+
|
| 92 |
+
# --- Model Initialization ---
|
| 93 |
+
DEFAULT_PROVIDER = "hf-inference"
|
| 94 |
+
FEATURED_MODELS_LIST = [
|
| 95 |
+
"meta-llama/Meta-Llama-3.1-8B-Instruct",
|
| 96 |
+
"mistralai/Mistral-7B-Instruct-v0.3",
|
| 97 |
+
"google/gemma-2-9b-it",
|
| 98 |
+
"Qwen/Qwen2-7B-Instruct",
|
| 99 |
+
"microsoft/Phi-3-mini-4k-instruct",
|
| 100 |
+
"HuggingFaceH4/zephyr-7b-beta",
|
| 101 |
+
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
| 102 |
+
"HuggingFaceTB/SmolLM-1.7B-Instruct"
|
| 103 |
+
]
|
| 104 |
+
VISION_MODELS_LIST = [
|
| 105 |
+
"Salesforce/blip-image-captioning-large",
|
| 106 |
+
"microsoft/trocr-large-handwritten",
|
| 107 |
+
"llava-hf/llava-1.5-7b-hf",
|
| 108 |
+
"google/vit-base-patch16-224"
|
| 109 |
+
]
|
| 110 |
+
DIFFUSION_MODELS_LIST = [
|
| 111 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 112 |
+
"runwayml/stable-diffusion-v1-5",
|
| 113 |
+
"OFA-Sys/small-stable-diffusion-v0"
|
| 114 |
+
]
|
| 115 |
+
OPENAI_MODELS_LIST = [
|
| 116 |
+
"gpt-4o",
|
| 117 |
+
"gpt-4-turbo",
|
| 118 |
+
"gpt-3.5-turbo",
|
| 119 |
+
"text-davinci-003"
|
| 120 |
+
]
|
| 121 |
+
st.session_state.setdefault('local_models', {})
|
| 122 |
+
st.session_state.setdefault('hf_inference_client', None)
|
| 123 |
+
st.session_state.setdefault('openai_client', None)
|
| 124 |
+
if _openai_available and OPENAI_API_KEY:
|
| 125 |
+
try:
|
| 126 |
+
st.session_state['openai_client'] = OpenAI(api_key=OPENAI_API_KEY)
|
| 127 |
+
logger.info("OpenAI client initialized successfully.")
|
| 128 |
+
except Exception as e:
|
| 129 |
+
st.error(f"Failed to initialize OpenAI client: {e}")
|
| 130 |
+
logger.error(f"OpenAI client initialization failed: {e}")
|
| 131 |
+
st.session_state['openai_client'] = None
|
| 132 |
+
|
| 133 |
+
# --- Session State Initialization ---
|
| 134 |
+
st.session_state.setdefault('layout_snapshots', [])
|
| 135 |
+
st.session_state.setdefault('layout_new_uploads', [])
|
| 136 |
+
st.session_state.setdefault('history', [])
|
| 137 |
+
st.session_state.setdefault('processing', {})
|
| 138 |
+
st.session_state.setdefault('asset_checkboxes', {'image': {}, 'md': {}, 'pdf': {}})
|
| 139 |
+
st.session_state.setdefault('downloaded_pdfs', {})
|
| 140 |
+
st.session_state.setdefault('unique_counter', 0)
|
| 141 |
+
st.session_state.setdefault('cam0_file', None)
|
| 142 |
+
st.session_state.setdefault('cam1_file', None)
|
| 143 |
+
st.session_state.setdefault('characters', [])
|
| 144 |
+
st.session_state.setdefault('char_form_reset_key', 0)
|
| 145 |
+
st.session_state.setdefault('gallery_size', 10)
|
| 146 |
+
st.session_state.setdefault('hf_provider', DEFAULT_PROVIDER)
|
| 147 |
+
st.session_state.setdefault('hf_custom_key', "")
|
| 148 |
+
st.session_state.setdefault('hf_selected_api_model', FEATURED_MODELS_LIST[0])
|
| 149 |
+
st.session_state.setdefault('hf_custom_api_model', "")
|
| 150 |
+
st.session_state.setdefault('openai_selected_model', OPENAI_MODELS_LIST[0] if _openai_available else "")
|
| 151 |
+
st.session_state.setdefault('selected_local_model_path', None)
|
| 152 |
+
st.session_state.setdefault('gen_max_tokens', 512)
|
| 153 |
+
st.session_state.setdefault('gen_temperature', 0.7)
|
| 154 |
+
st.session_state.setdefault('gen_top_p', 0.95)
|
| 155 |
+
st.session_state.setdefault('gen_frequency_penalty', 0.0)
|
| 156 |
+
if 'asset_gallery_container' not in st.session_state:
|
| 157 |
+
st.session_state['asset_gallery_container'] = {'image': st.sidebar.empty(), 'md': st.sidebar.empty(), 'pdf': st.sidebar.empty()}
|
| 158 |
+
|
| 159 |
+
# --- Dataclasses ---
|
| 160 |
+
@dataclass
|
| 161 |
+
class LocalModelConfig:
|
| 162 |
+
name: str
|
| 163 |
+
hf_id: str
|
| 164 |
+
model_type: str
|
| 165 |
+
size_category: str = "unknown"
|
| 166 |
+
domain: Optional[str] = None
|
| 167 |
+
local_path: str = field(init=False)
|
| 168 |
+
def __post_init__(self):
|
| 169 |
+
type_folder = f"{self.model_type}_models"
|
| 170 |
+
safe_name = re.sub(r'[^\w\-]+', '_', self.name)
|
| 171 |
+
self.local_path = os.path.join(type_folder, safe_name)
|
| 172 |
+
def get_full_path(self):
|
| 173 |
+
return os.path.abspath(self.local_path)
|
| 174 |
+
|
| 175 |
+
@dataclass
|
| 176 |
+
class DiffusionConfig:
|
| 177 |
+
name: str
|
| 178 |
+
base_model: str
|
| 179 |
+
size: str
|
| 180 |
+
domain: Optional[str] = None
|
| 181 |
+
@property
|
| 182 |
+
def model_path(self):
|
| 183 |
+
return f"diffusion_models/{self.name}"
|
| 184 |
+
|
| 185 |
# --- Helper Functions ---
|
| 186 |
+
def generate_filename(sequence, ext="png"):
|
| 187 |
+
timestamp = time.strftime('%Y%m%d_%H%M%S')
|
| 188 |
+
safe_sequence = re.sub(r'[^\w\-]+', '_', str(sequence))
|
| 189 |
+
return f"{safe_sequence}_{timestamp}.{ext}"
|
| 190 |
+
|
| 191 |
+
def pdf_url_to_filename(url):
|
| 192 |
+
name = re.sub(r'^https?://', '', url)
|
| 193 |
+
name = re.sub(r'[<>:"/\\|?*]', '_', name)
|
| 194 |
+
return name[:100] + ".pdf"
|
| 195 |
+
|
| 196 |
+
def get_download_link(file_path, mime_type="application/octet-stream", label="Download"):
|
| 197 |
+
if not os.path.exists(file_path):
|
| 198 |
+
return f"{label} (File not found)"
|
| 199 |
+
try:
|
| 200 |
+
with open(file_path, "rb") as f:
|
| 201 |
+
file_bytes = f.read()
|
| 202 |
+
b64 = base64.b64encode(file_bytes).decode()
|
| 203 |
+
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label}</a>'
|
| 204 |
+
except Exception as e:
|
| 205 |
+
logger.error(f"Error creating download link for {file_path}: {e}")
|
| 206 |
+
return f"{label} (Error)"
|
| 207 |
+
|
| 208 |
+
def zip_directory(directory_path, zip_path):
|
| 209 |
+
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
| 210 |
+
for root, _, files in os.walk(directory_path):
|
| 211 |
+
for file in files:
|
| 212 |
+
file_path = os.path.join(root, file)
|
| 213 |
+
zipf.write(file_path, os.path.relpath(file_path, os.path.dirname(directory_path)))
|
| 214 |
+
|
| 215 |
+
def get_local_model_paths(model_type="causal"):
|
| 216 |
+
pattern = f"{model_type}_models/*"
|
| 217 |
+
dirs = [d for d in glob.glob(pattern) if os.path.isdir(d)]
|
| 218 |
+
return dirs
|
| 219 |
+
|
| 220 |
+
def get_gallery_files(file_types=("png", "pdf", "jpg", "jpeg", "md", "txt")):
|
| 221 |
+
all_files = set()
|
| 222 |
+
for ext in file_types:
|
| 223 |
+
all_files.update(glob.glob(f"*.{ext.lower()}"))
|
| 224 |
+
all_files.update(glob.glob(f"*.{ext.upper()}"))
|
| 225 |
+
return sorted([f for f in all_files if os.path.basename(f).lower() != 'readme.md'])
|
| 226 |
+
|
| 227 |
+
def get_typed_gallery_files(file_type):
|
| 228 |
+
if file_type == 'image':
|
| 229 |
+
return get_gallery_files(('png', 'jpg', 'jpeg'))
|
| 230 |
+
elif file_type == 'md':
|
| 231 |
+
return get_gallery_files(('md',))
|
| 232 |
+
elif file_type == 'pdf':
|
| 233 |
+
return get_gallery_files(('pdf',))
|
| 234 |
+
return []
|
| 235 |
+
|
| 236 |
+
def download_pdf(url, output_path):
|
| 237 |
+
try:
|
| 238 |
+
headers = {'User-Agent': 'Mozilla/5.0'}
|
| 239 |
+
response = requests.get(url, stream=True, timeout=20, headers=headers)
|
| 240 |
+
response.raise_for_status()
|
| 241 |
+
with open(output_path, "wb") as f:
|
| 242 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 243 |
+
f.write(chunk)
|
| 244 |
+
logger.info(f"Successfully downloaded {url} to {output_path}")
|
| 245 |
+
return True
|
| 246 |
+
except requests.exceptions.RequestException as e:
|
| 247 |
+
logger.error(f"Failed to download {url}: {e}")
|
| 248 |
+
if os.path.exists(output_path):
|
| 249 |
+
try:
|
| 250 |
+
os.remove(output_path)
|
| 251 |
+
except:
|
| 252 |
+
pass
|
| 253 |
+
return False
|
| 254 |
+
except Exception as e:
|
| 255 |
+
logger.error(f"An unexpected error occurred during download of {url}: {e}")
|
| 256 |
+
if os.path.exists(output_path):
|
| 257 |
+
try:
|
| 258 |
+
os.remove(output_path)
|
| 259 |
+
except:
|
| 260 |
+
pass
|
| 261 |
+
return False
|
| 262 |
+
|
| 263 |
+
async def process_pdf_snapshot(pdf_path, mode="single", resolution_factor=2.0):
|
| 264 |
+
start_time = time.time()
|
| 265 |
+
status_placeholder = st.empty()
|
| 266 |
+
status_placeholder.text(f"Processing PDF Snapshot ({mode}, Res: {resolution_factor}x)... (0s)")
|
| 267 |
+
output_files = []
|
| 268 |
+
try:
|
| 269 |
+
doc = fitz.open(pdf_path)
|
| 270 |
+
matrix = fitz.Matrix(resolution_factor, resolution_factor)
|
| 271 |
+
num_pages_to_process = min(1, len(doc)) if mode == "single" else min(2, len(doc)) if mode == "twopage" else len(doc)
|
| 272 |
+
for i in range(num_pages_to_process):
|
| 273 |
+
page_start_time = time.time()
|
| 274 |
+
page = doc[i]
|
| 275 |
+
pix = page.get_pixmap(matrix=matrix)
|
| 276 |
+
base_name = os.path.splitext(os.path.basename(pdf_path))[0]
|
| 277 |
+
output_file = generate_filename(f"{base_name}_pg{i+1}_{mode}", "png")
|
| 278 |
+
await asyncio.to_thread(pix.save, output_file)
|
| 279 |
+
output_files.append(output_file)
|
| 280 |
+
elapsed_page = int(time.time() - page_start_time)
|
| 281 |
+
status_placeholder.text(f"Processing PDF Snapshot ({mode}, Res: {resolution_factor}x)... Page {i+1}/{num_pages_to_process} done ({elapsed_page}s)")
|
| 282 |
+
await asyncio.sleep(0.01)
|
| 283 |
+
doc.close()
|
| 284 |
+
elapsed = int(time.time() - start_time)
|
| 285 |
+
status_placeholder.success(f"PDF Snapshot ({mode}, {len(output_files)} files) completed in {elapsed}s!")
|
| 286 |
+
return output_files
|
| 287 |
+
except Exception as e:
|
| 288 |
+
logger.error(f"Failed to process PDF snapshot for {pdf_path}: {e}")
|
| 289 |
+
status_placeholder.error(f"Failed to process PDF {os.path.basename(pdf_path)}: {e}")
|
| 290 |
+
for f in output_files:
|
| 291 |
+
if os.path.exists(f):
|
| 292 |
+
os.remove(f)
|
| 293 |
+
return []
|
| 294 |
+
|
| 295 |
+
def get_hf_client() -> Optional[InferenceClient]:
|
| 296 |
+
provider = st.session_state.hf_provider
|
| 297 |
+
custom_key = st.session_state.hf_custom_key.strip()
|
| 298 |
+
token_to_use = custom_key if custom_key else HF_TOKEN
|
| 299 |
+
if not token_to_use and provider != "hf-inference":
|
| 300 |
+
st.error(f"Provider '{provider}' requires a Hugging Face API token.")
|
| 301 |
+
return None
|
| 302 |
+
if provider == "hf-inference" and not token_to_use:
|
| 303 |
+
logger.warning("Using hf-inference provider without a token. Rate limits may apply.")
|
| 304 |
+
token_to_use = None
|
| 305 |
+
current_client = st.session_state.get('hf_inference_client')
|
| 306 |
+
needs_reinit = True
|
| 307 |
+
if current_client:
|
| 308 |
+
client_uses_custom = hasattr(current_client, '_token') and current_client._token == custom_key
|
| 309 |
+
client_uses_default = hasattr(current_client, '_token') and current_client._token == HF_TOKEN
|
| 310 |
+
client_uses_no_token = not hasattr(current_client, '_token') or current_client._token is None
|
| 311 |
+
if current_client.provider == provider:
|
| 312 |
+
if custom_key and client_uses_custom:
|
| 313 |
+
needs_reinit = False
|
| 314 |
+
elif not custom_key and HF_TOKEN and client_uses_default:
|
| 315 |
+
needs_reinit = False
|
| 316 |
+
elif not custom_key and not HF_TOKEN and client_uses_no_token:
|
| 317 |
+
needs_reinit = False
|
| 318 |
+
if needs_reinit:
|
| 319 |
+
try:
|
| 320 |
+
logger.info(f"Initializing InferenceClient for provider: {provider}.")
|
| 321 |
+
st.session_state.hf_inference_client = InferenceClient(token=token_to_use, provider=provider)
|
| 322 |
+
logger.info("InferenceClient initialized successfully.")
|
| 323 |
+
except Exception as e:
|
| 324 |
+
st.error(f"Failed to initialize Hugging Face client: {e}")
|
| 325 |
+
logger.error(f"InferenceClient initialization failed: {e}")
|
| 326 |
+
st.session_state.hf_inference_client = None
|
| 327 |
+
return st.session_state.hf_inference_client
|
| 328 |
+
|
| 329 |
+
def process_text_hf(text: str, prompt: str, use_api: bool, model_id: str = None) -> str:
|
| 330 |
+
status_placeholder = st.empty()
|
| 331 |
+
start_time = time.time()
|
| 332 |
+
result_text = ""
|
| 333 |
+
params = {
|
| 334 |
+
"max_new_tokens": st.session_state.gen_max_tokens,
|
| 335 |
+
"temperature": st.session_state.gen_temperature,
|
| 336 |
+
"top_p": st.session_state.gen_top_p,
|
| 337 |
+
"repetition_penalty": st.session_state.gen_frequency_penalty + 1.0,
|
| 338 |
+
}
|
| 339 |
+
seed = st.session_state.gen_seed
|
| 340 |
+
if seed != -1:
|
| 341 |
+
params["seed"] = seed
|
| 342 |
+
system_prompt = "You are a helpful assistant. Process the following text based on the user's request."
|
| 343 |
+
full_prompt = f"{prompt}\n\n---\n\n{text}"
|
| 344 |
+
messages = [
|
| 345 |
+
{"role": "system", "content": system_prompt},
|
| 346 |
+
{"role": "user", "content": full_prompt}
|
| 347 |
+
]
|
| 348 |
+
if use_api:
|
| 349 |
+
status_placeholder.info("Processing text using Hugging Face API...")
|
| 350 |
+
client = get_hf_client()
|
| 351 |
+
if not client:
|
| 352 |
+
return "Error: Hugging Face client not available."
|
| 353 |
+
model_id = model_id or st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model
|
| 354 |
+
status_placeholder.info(f"Using API Model: {model_id}")
|
| 355 |
+
try:
|
| 356 |
+
response = client.chat_completion(
|
| 357 |
+
model=model_id,
|
| 358 |
+
messages=messages,
|
| 359 |
+
max_tokens=params['max_new_tokens'],
|
| 360 |
+
temperature=params['temperature'],
|
| 361 |
+
top_p=params['top_p'],
|
| 362 |
+
)
|
| 363 |
+
result_text = response.choices[0].message.content or ""
|
| 364 |
+
logger.info(f"HF API text processing successful for model {model_id}.")
|
| 365 |
+
except Exception as e:
|
| 366 |
+
logger.error(f"HF API text processing failed for model {model_id}: {e}")
|
| 367 |
+
result_text = f"Error during Hugging Face API inference: {str(e)}"
|
| 368 |
+
else:
|
| 369 |
+
status_placeholder.info("Processing text using local model...")
|
| 370 |
+
if not _transformers_available:
|
| 371 |
+
return "Error: Transformers library not available."
|
| 372 |
+
model_path = st.session_state.get('selected_local_model_path')
|
| 373 |
+
if not model_path or model_path not in st.session_state.get('local_models', {}):
|
| 374 |
+
return "Error: No suitable local model selected."
|
| 375 |
+
local_model_data = st.session_state['local_models'][model_path]
|
| 376 |
+
if local_model_data.get('type') != 'causal':
|
| 377 |
+
return f"Error: Loaded model '{os.path.basename(model_path)}' is not a Causal LM."
|
| 378 |
+
status_placeholder.info(f"Using Local Model: {os.path.basename(model_path)}")
|
| 379 |
+
model = local_model_data.get('model')
|
| 380 |
+
tokenizer = local_model_data.get('tokenizer')
|
| 381 |
+
if not model or not tokenizer:
|
| 382 |
+
return f"Error: Model or tokenizer not found for {os.path.basename(model_path)}."
|
| 383 |
+
try:
|
| 384 |
+
try:
|
| 385 |
+
prompt_for_model = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 386 |
+
except Exception:
|
| 387 |
+
logger.warning(f"Could not apply chat template for {model_path}. Using basic formatting.")
|
| 388 |
+
prompt_for_model = f"System: {system_prompt}\nUser: {full_prompt}\nAssistant:"
|
| 389 |
+
inputs = tokenizer(prompt_for_model, return_tensors="pt", padding=True, truncation=True, max_length=params['max_new_tokens'] * 2)
|
| 390 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 391 |
+
generate_params = {
|
| 392 |
+
"max_new_tokens": params['max_new_tokens'],
|
| 393 |
+
"temperature": params['temperature'],
|
| 394 |
+
"top_p": params['top_p'],
|
| 395 |
+
"repetition_penalty": params.get('repetition_penalty', 1.0),
|
| 396 |
+
"do_sample": True if params['temperature'] > 0.1 else False,
|
| 397 |
+
"pad_token_id": tokenizer.eos_token_id
|
| 398 |
+
}
|
| 399 |
+
with torch.no_grad():
|
| 400 |
+
outputs = model.generate(**inputs, **generate_params)
|
| 401 |
+
input_length = inputs['input_ids'].shape[1]
|
| 402 |
+
generated_ids = outputs[0][input_length:]
|
| 403 |
+
result_text = tokenizer.decode(generated_ids, skip_special_tokens=True)
|
| 404 |
+
logger.info(f"Local text processing successful for model {model_path}.")
|
| 405 |
+
except Exception as e:
|
| 406 |
+
logger.error(f"Local text processing failed for model {model_path}: {e}")
|
| 407 |
+
result_text = f"Error during local model inference: {str(e)}"
|
| 408 |
+
elapsed = int(time.time() - start_time)
|
| 409 |
+
status_placeholder.success(f"Text processing completed in {elapsed}s.")
|
| 410 |
+
return result_text
|
| 411 |
+
|
| 412 |
+
def process_text_openai(text: str, prompt: str, model_id: str) -> str:
|
| 413 |
+
if not _openai_available or not st.session_state.get('openai_client'):
|
| 414 |
+
return "Error: OpenAI client not available or API key missing."
|
| 415 |
+
status_placeholder = st.empty()
|
| 416 |
+
start_time = time.time()
|
| 417 |
+
client = st.session_state['openai_client']
|
| 418 |
+
system_prompt = "You are a helpful assistant. Process the following text based on the user's request."
|
| 419 |
+
full_prompt = f"{prompt}\n\n---\n\n{text}"
|
| 420 |
+
messages = [
|
| 421 |
+
{"role": "system", "content": system_prompt},
|
| 422 |
+
{"role": "user", "content": full_prompt}
|
| 423 |
+
]
|
| 424 |
+
status_placeholder.info(f"Processing text using OpenAI model: {model_id}...")
|
| 425 |
+
try:
|
| 426 |
+
response = client.chat.completions.create(
|
| 427 |
+
model=model_id,
|
| 428 |
+
messages=messages,
|
| 429 |
+
max_tokens=st.session_state.gen_max_tokens,
|
| 430 |
+
temperature=st.session_state.gen_temperature,
|
| 431 |
+
top_p=st.session_state.gen_top_p,
|
| 432 |
+
)
|
| 433 |
+
result_text = response.choices[0].message.content or ""
|
| 434 |
+
logger.info(f"OpenAI text processing successful for model {model_id}.")
|
| 435 |
+
except Exception as e:
|
| 436 |
+
logger.error(f"OpenAI text processing failed for model {model_id}: {e}")
|
| 437 |
+
result_text = f"Error during OpenAI inference: {str(e)}"
|
| 438 |
+
elapsed = int(time.time() - start_time)
|
| 439 |
+
status_placeholder.success(f"Text processing completed in {elapsed}s.")
|
| 440 |
+
return result_text
|
| 441 |
+
|
| 442 |
+
def process_image_hf(image: Image.Image, prompt: str, use_api: bool, model_id: str = None) -> str:
|
| 443 |
+
status_placeholder = st.empty()
|
| 444 |
+
start_time = time.time()
|
| 445 |
+
result_text = ""
|
| 446 |
+
if use_api:
|
| 447 |
+
status_placeholder.info("Processing image using Hugging Face API...")
|
| 448 |
+
client = get_hf_client()
|
| 449 |
+
if not client:
|
| 450 |
+
return "Error: HF client not configured."
|
| 451 |
+
buffered = BytesIO()
|
| 452 |
+
image.save(buffered, format="PNG" if image.format != 'JPEG' else 'JPEG')
|
| 453 |
+
img_bytes = buffered.getvalue()
|
| 454 |
+
model_id = model_id or "Salesforce/blip-image-captioning-large"
|
| 455 |
+
status_placeholder.info(f"Using API Image-to-Text Model: {model_id}")
|
| 456 |
+
try:
|
| 457 |
+
response_list = client.image_to_text(data=img_bytes, model=model_id)
|
| 458 |
+
if response_list and isinstance(response_list, list) and 'generated_text' in response_list[0]:
|
| 459 |
+
result_text = response_list[0]['generated_text']
|
| 460 |
+
logger.info(f"HF API image captioning successful for model {model_id}.")
|
| 461 |
+
else:
|
| 462 |
+
result_text = "Error: Unexpected response format from image-to-text API."
|
| 463 |
+
logger.warning(f"Unexpected API response for image-to-text: {response_list}")
|
| 464 |
+
except Exception as e:
|
| 465 |
+
logger.error(f"HF API image processing failed: {e}")
|
| 466 |
+
result_text = f"Error during Hugging Face API image inference: {str(e)}"
|
| 467 |
+
else:
|
| 468 |
+
status_placeholder.info("Processing image using local model...")
|
| 469 |
+
if not _transformers_available:
|
| 470 |
+
return "Error: Transformers library needed."
|
| 471 |
+
model_path = st.session_state.get('selected_local_model_path')
|
| 472 |
+
if not model_path or model_path not in st.session_state.get('local_models', {}):
|
| 473 |
+
return "Error: No suitable local model selected."
|
| 474 |
+
local_model_data = st.session_state['local_models'][model_path]
|
| 475 |
+
model_type = local_model_data.get('type')
|
| 476 |
+
if model_type == 'vision':
|
| 477 |
+
processor = local_model_data.get('processor')
|
| 478 |
+
model = local_model_data.get('model')
|
| 479 |
+
if processor and model:
|
| 480 |
+
try:
|
| 481 |
+
inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device)
|
| 482 |
+
generated_ids = model.generate(**inputs, max_new_tokens=st.session_state.gen_max_tokens)
|
| 483 |
+
result_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
| 484 |
+
except Exception as e:
|
| 485 |
+
result_text = f"Error during local vision model inference: {e}"
|
| 486 |
+
else:
|
| 487 |
+
result_text = "Error: Processor or model missing for local vision task."
|
| 488 |
+
elif model_type == 'ocr':
|
| 489 |
+
processor = local_model_data.get('processor')
|
| 490 |
+
model = local_model_data.get('model')
|
| 491 |
+
if processor and model:
|
| 492 |
+
try:
|
| 493 |
+
pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(model.device)
|
| 494 |
+
generated_ids = model.generate(pixel_values, max_new_tokens=st.session_state.gen_max_tokens)
|
| 495 |
+
result_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 496 |
+
except Exception as e:
|
| 497 |
+
result_text = f"Error during local OCR model inference: {e}"
|
| 498 |
+
else:
|
| 499 |
+
result_text = "Error: Processor or model missing for local OCR task."
|
| 500 |
+
else:
|
| 501 |
+
result_text = f"Error: Loaded model '{os.path.basename(model_path)}' is not a recognized vision/OCR type."
|
| 502 |
+
elapsed = int(time.time() - start_time)
|
| 503 |
+
status_placeholder.success(f"Image processing completed in {elapsed}s.")
|
| 504 |
+
return result_text
|
| 505 |
+
|
| 506 |
+
def process_image_openai(image: Image.Image, prompt: str, model_id: str = "gpt-4o") -> str:
|
| 507 |
+
if not _openai_available or not st.session_state.get('openai_client'):
|
| 508 |
+
return "Error: OpenAI client not available or API key missing."
|
| 509 |
+
status_placeholder = st.empty()
|
| 510 |
+
start_time = time.time()
|
| 511 |
+
client = st.session_state['openai_client']
|
| 512 |
+
buffered = BytesIO()
|
| 513 |
+
image.save(buffered, format="PNG")
|
| 514 |
+
img_b64 = base64.b64encode(buffered.getvalue()).decode()
|
| 515 |
+
status_placeholder.info(f"Processing image using OpenAI model: {model_id}...")
|
| 516 |
+
try:
|
| 517 |
+
response = client.chat.completions.create(
|
| 518 |
+
model=model_id,
|
| 519 |
+
messages=[
|
| 520 |
+
{"role": "user", "content": [
|
| 521 |
+
{"type": "text", "text": prompt},
|
| 522 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_b64}"}}
|
| 523 |
+
]}
|
| 524 |
+
],
|
| 525 |
+
max_tokens=st.session_state.gen_max_tokens,
|
| 526 |
+
temperature=st.session_state.gen_temperature,
|
| 527 |
+
)
|
| 528 |
+
result_text = response.choices[0].message.content or ""
|
| 529 |
+
logger.info(f"OpenAI image processing successful for model {model_id}.")
|
| 530 |
+
except Exception as e:
|
| 531 |
+
logger.error(f"OpenAI image processing failed for model {model_id}: {e}")
|
| 532 |
+
result_text = f"Error during OpenAI image inference: {str(e)}"
|
| 533 |
+
elapsed = int(time.time() - start_time)
|
| 534 |
+
status_placeholder.success(f"Image processing completed in {elapsed}s.")
|
| 535 |
+
return result_text
|
| 536 |
+
|
| 537 |
+
async def process_hf_ocr(image: Image.Image, output_file: str, use_api: bool, model_id: str = None) -> str:
|
| 538 |
+
ocr_prompt = "Extract text content from this image."
|
| 539 |
+
result = process_image_hf(image, ocr_prompt, use_api, model_id=model_id or "microsoft/trocr-large-handwritten")
|
| 540 |
+
if result and not result.startswith("Error") and not result.startswith("["):
|
| 541 |
+
try:
|
| 542 |
+
async with aiofiles.open(output_file, "w", encoding='utf-8') as f:
|
| 543 |
+
await f.write(result)
|
| 544 |
+
logger.info(f"HF OCR result saved to {output_file}")
|
| 545 |
+
except IOError as e:
|
| 546 |
+
logger.error(f"Failed to save HF OCR output to {output_file}: {e}")
|
| 547 |
+
result += f"\n[Error saving file: {e}]"
|
| 548 |
+
elif os.path.exists(output_file):
|
| 549 |
+
try:
|
| 550 |
+
os.remove(output_file)
|
| 551 |
+
except OSError:
|
| 552 |
+
pass
|
| 553 |
+
return result
|
| 554 |
+
|
| 555 |
+
async def process_openai_ocr(image: Image.Image, output_file: str, model_id: str = "gpt-4o") -> str:
|
| 556 |
+
ocr_prompt = "Extract text content from this image."
|
| 557 |
+
result = process_image_openai(image, ocr_prompt, model_id)
|
| 558 |
+
if result and not result.startswith("Error"):
|
| 559 |
+
try:
|
| 560 |
+
async with aiofiles.open(output_file, "w", encoding='utf-8') as f:
|
| 561 |
+
await f.write(result)
|
| 562 |
+
logger.info(f"OpenAI OCR result saved to {output_file}")
|
| 563 |
+
except IOError as e:
|
| 564 |
+
logger.error(f"Failed to save OpenAI OCR output to {output_file}: {e}")
|
| 565 |
+
result += f"\n[Error saving file: {e}]"
|
| 566 |
+
elif os.path.exists(output_file):
|
| 567 |
+
try:
|
| 568 |
+
os.remove(output_file)
|
| 569 |
+
except OSError:
|
| 570 |
+
pass
|
| 571 |
+
return result
|
| 572 |
+
|
| 573 |
+
def randomize_character_content():
|
| 574 |
+
intro_templates = [
|
| 575 |
+
"{char} is a valiant knight...", "{char} is a mischievous thief...",
|
| 576 |
+
"{char} is a wise scholar...", "{char} is a fiery warrior...", "{char} is a gentle healer..."
|
| 577 |
+
]
|
| 578 |
+
greeting_templates = [
|
| 579 |
+
"'I am from the knight's guild...'", "'I heard you needed helpβnameβs {char}...",
|
| 580 |
+
"'Oh, hello! IοΏ½οΏ½m {char}, didnβt see you there...'", "'Iβm {char}, and Iβm here to fight...'",
|
| 581 |
+
"'Iβm {char}, here to heal...'"
|
| 582 |
+
]
|
| 583 |
+
name = f"Character_{random.randint(1000, 9999)}"
|
| 584 |
+
gender = random.choice(["Male", "Female"])
|
| 585 |
+
intro = random.choice(intro_templates).format(char=name)
|
| 586 |
+
greeting = random.choice(greeting_templates).format(char=name)
|
| 587 |
+
return name, gender, intro, greeting
|
| 588 |
+
|
| 589 |
+
def save_character(character_data):
|
| 590 |
+
characters = st.session_state.get('characters', [])
|
| 591 |
+
if any(c['name'] == character_data['name'] for c in characters):
|
| 592 |
+
st.error(f"Character name '{character_data['name']}' already exists.")
|
| 593 |
+
return False
|
| 594 |
+
characters.append(character_data)
|
| 595 |
+
st.session_state['characters'] = characters
|
| 596 |
+
try:
|
| 597 |
+
with open("characters.json", "w", encoding='utf-8') as f:
|
| 598 |
+
json.dump(characters, f, indent=2)
|
| 599 |
+
logger.info(f"Saved character: {character_data['name']}")
|
| 600 |
+
return True
|
| 601 |
+
except IOError as e:
|
| 602 |
+
logger.error(f"Failed to save characters.json: {e}")
|
| 603 |
+
st.error(f"Failed to save character file: {e}")
|
| 604 |
+
return False
|
| 605 |
+
|
| 606 |
+
def load_characters():
|
| 607 |
+
if not os.path.exists("characters.json"):
|
| 608 |
+
st.session_state['characters'] = []
|
| 609 |
+
return
|
| 610 |
+
try:
|
| 611 |
+
with open("characters.json", "r", encoding='utf-8') as f:
|
| 612 |
+
characters = json.load(f)
|
| 613 |
+
if isinstance(characters, list):
|
| 614 |
+
st.session_state['characters'] = characters
|
| 615 |
+
logger.info(f"Loaded {len(characters)} characters.")
|
| 616 |
+
else:
|
| 617 |
+
st.session_state['characters'] = []
|
| 618 |
+
logger.warning("characters.json is not a list, resetting.")
|
| 619 |
+
os.remove("characters.json")
|
| 620 |
+
except (json.JSONDecodeError, IOError) as e:
|
| 621 |
+
logger.error(f"Failed to load or decode characters.json: {e}")
|
| 622 |
+
st.error(f"Error loading character file: {e}. Starting fresh.")
|
| 623 |
+
st.session_state['characters'] = []
|
| 624 |
+
try:
|
| 625 |
+
corrupt_filename = f"characters_corrupt_{int(time.time())}.json"
|
| 626 |
+
shutil.copy("characters.json", corrupt_filename)
|
| 627 |
+
logger.info(f"Backed up corrupted character file to {corrupt_filename}")
|
| 628 |
+
os.remove("characters.json")
|
| 629 |
+
except Exception as backup_e:
|
| 630 |
+
logger.error(f"Could not backup corrupted character file: {backup_e}")
|
| 631 |
+
|
| 632 |
+
def clean_stem(fn: str) -> str:
|
| 633 |
+
name = os.path.splitext(os.path.basename(fn))[0]
|
| 634 |
+
name = name.replace('-', ' ').replace('_', ' ')
|
| 635 |
+
return name.strip().title()
|
| 636 |
+
|
| 637 |
+
def make_image_sized_pdf(sources, is_markdown_flags):
|
| 638 |
+
if not sources:
|
| 639 |
+
st.warning("No sources provided for PDF generation.")
|
| 640 |
+
return None
|
| 641 |
+
buf = BytesIO()
|
| 642 |
+
styles = getSampleStyleSheet()
|
| 643 |
+
md_style = ParagraphStyle(
|
| 644 |
+
name='Markdown',
|
| 645 |
+
fontSize=10,
|
| 646 |
+
leading=12,
|
| 647 |
+
spaceAfter=6,
|
| 648 |
+
alignment=TA_JUSTIFY,
|
| 649 |
+
fontName='Helvetica'
|
| 650 |
+
)
|
| 651 |
+
doc = SimpleDocTemplate(buf, pagesize=letter, rightMargin=36, leftMargin=36, topMargin=36, bottomMargin=36)
|
| 652 |
+
story = []
|
| 653 |
+
try:
|
| 654 |
+
for idx, (src, is_md) in enumerate(zip(sources, is_markdown_flags), start=1):
|
| 655 |
+
status_placeholder = st.empty()
|
| 656 |
+
filename = 'page_' + str(idx)
|
| 657 |
+
status_placeholder.info(f"Adding page {idx}/{len(sources)}: {os.path.basename(str(src))}...")
|
| 658 |
+
try:
|
| 659 |
+
if is_md:
|
| 660 |
+
with open(src, 'r', encoding='utf-8') as f:
|
| 661 |
+
content = f.read()
|
| 662 |
+
content = re.sub(r'!\[.*?\]\(.*?\)', '', content)
|
| 663 |
+
paragraphs = content.split('\n\n')
|
| 664 |
+
for para in paragraphs:
|
| 665 |
+
if para.strip():
|
| 666 |
+
story.append(Paragraph(para.strip(), md_style))
|
| 667 |
+
story.append(PageBreak())
|
| 668 |
+
status_placeholder.success(f"Added markdown page {idx}/{len(sources)}: {filename}")
|
| 669 |
+
else:
|
| 670 |
+
if isinstance(src, str):
|
| 671 |
+
if not os.path.exists(src):
|
| 672 |
+
logger.warning(f"Image file not found: {src}. Skipping.")
|
| 673 |
+
status_placeholder.warning(f"Skipping missing file: {os.path.basename(src)}")
|
| 674 |
+
continue
|
| 675 |
+
img_obj = Image.open(src)
|
| 676 |
+
filename = os.path.basename(src)
|
| 677 |
+
else:
|
| 678 |
+
src.seek(0)
|
| 679 |
+
img_obj = Image.open(src)
|
| 680 |
+
filename = getattr(src, 'name', f'uploaded_image_{idx}')
|
| 681 |
+
src.seek(0)
|
| 682 |
+
with img_obj:
|
| 683 |
+
iw, ih = img_obj.size
|
| 684 |
+
if iw <= 0 or ih <= 0:
|
| 685 |
+
logger.warning(f"Invalid image dimensions ({iw}x{ih}) for {filename}. Skipping.")
|
| 686 |
+
status_placeholder.warning(f"Skipping invalid image: {filename}")
|
| 687 |
+
continue
|
| 688 |
+
cap_h = 30
|
| 689 |
+
c = canvas.Canvas(BytesIO(), pagesize=(iw, ih + cap_h))
|
| 690 |
+
img_reader = ImageReader(img_obj)
|
| 691 |
+
c.drawImage(img_reader, 0, cap_h, width=iw, height=ih, preserveAspectRatio=True, anchor='c', mask='auto')
|
| 692 |
+
caption = clean_stem(filename)
|
| 693 |
+
c.setFont('Helvetica', 12)
|
| 694 |
+
c.setFillColorRGB(0, 0, 0)
|
| 695 |
+
c.drawCentredString(iw / 2, cap_h / 2 + 3, caption)
|
| 696 |
+
c.setFont('Helvetica', 8)
|
| 697 |
+
c.setFillColorRGB(0.5, 0.5, 0.5)
|
| 698 |
+
c.drawRightString(iw - 10, 8, f"Page {idx}")
|
| 699 |
+
c.save()
|
| 700 |
+
story.append(PageBreak())
|
| 701 |
+
status_placeholder.success(f"Added image page {idx}/{len(sources)}: {filename}")
|
| 702 |
+
except Exception as e:
|
| 703 |
+
logger.error(f"Error processing source {src}: {e}")
|
| 704 |
+
status_placeholder.error(f"Error adding page {idx}: {e}")
|
| 705 |
+
doc.build(story)
|
| 706 |
+
buf.seek(0)
|
| 707 |
+
if buf.getbuffer().nbytes < 100:
|
| 708 |
+
st.error("PDF generation resulted in an empty file.")
|
| 709 |
+
return None
|
| 710 |
+
return buf.getvalue()
|
| 711 |
+
except Exception as e:
|
| 712 |
+
logger.error(f"Fatal error during PDF generation: {e}")
|
| 713 |
+
st.error(f"PDF Generation Failed: {e}")
|
| 714 |
+
return None
|
| 715 |
+
|
| 716 |
+
def update_gallery(gallery_type='image'):
|
| 717 |
+
container = st.session_state['asset_gallery_container'][gallery_type]
|
| 718 |
+
with container:
|
| 719 |
+
st.markdown(f"### {gallery_type.capitalize()} Gallery πΈ")
|
| 720 |
+
files = get_typed_gallery_files(gallery_type)
|
| 721 |
+
if not files:
|
| 722 |
+
st.info(f"No {gallery_type} assets found yet.")
|
| 723 |
+
return
|
| 724 |
+
st.caption(f"Found {len(files)} assets:")
|
| 725 |
+
for idx, file in enumerate(files[:st.session_state.gallery_size]):
|
| 726 |
+
st.session_state['unique_counter'] += 1
|
| 727 |
+
unique_id = st.session_state['unique_counter']
|
| 728 |
+
item_key_base = f"{gallery_type}_gallery_item_{os.path.basename(file)}_{unique_id}"
|
| 729 |
+
basename = os.path.basename(file)
|
| 730 |
+
st.markdown(f"**{basename}**")
|
| 731 |
+
try:
|
| 732 |
+
file_ext = os.path.splitext(file)[1].lower()
|
| 733 |
+
if gallery_type == 'image' and file_ext in ['.png', '.jpg', '.jpeg']:
|
| 734 |
+
with st.expander("Preview", expanded=False):
|
| 735 |
+
st.image(Image.open(file), use_container_width=True)
|
| 736 |
+
elif gallery_type == 'pdf' and file_ext == '.pdf':
|
| 737 |
+
with st.expander("Preview (Page 1)", expanded=False):
|
| 738 |
+
doc = fitz.open(file)
|
| 739 |
+
if len(doc) > 0:
|
| 740 |
+
pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5))
|
| 741 |
+
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 742 |
+
st.image(img, use_container_width=True)
|
| 743 |
+
else:
|
| 744 |
+
st.warning("Empty PDF")
|
| 745 |
+
doc.close()
|
| 746 |
+
elif gallery_type == 'md' and file_ext == '.md':
|
| 747 |
+
with st.expander("Preview (Start)", expanded=False):
|
| 748 |
+
with open(file, 'r', encoding='utf-8', errors='ignore') as f:
|
| 749 |
+
content_preview = f.read(200)
|
| 750 |
+
st.code(content_preview + "...", language='markdown')
|
| 751 |
+
action_cols = st.columns(3)
|
| 752 |
+
with action_cols[0]:
|
| 753 |
+
checkbox_key = f"cb_{item_key_base}"
|
| 754 |
+
st.session_state['asset_checkboxes'][gallery_type][file] = st.checkbox(
|
| 755 |
+
"Select",
|
| 756 |
+
value=st.session_state['asset_checkboxes'][gallery_type].get(file, False),
|
| 757 |
+
key=checkbox_key
|
| 758 |
+
)
|
| 759 |
+
with action_cols[1]:
|
| 760 |
+
mime_map = {'.png': 'image/png', '.jpg': 'image/jpeg', '.jpeg': 'image/jpeg', '.pdf': 'application/pdf', '.md': 'text/markdown'}
|
| 761 |
+
mime_type = mime_map.get(file_ext, "application/octet-stream")
|
| 762 |
+
dl_key = f"dl_{item_key_base}"
|
| 763 |
+
try:
|
| 764 |
+
with open(file, "rb") as fp:
|
| 765 |
+
st.download_button(
|
| 766 |
+
label="π₯",
|
| 767 |
+
data=fp,
|
| 768 |
+
file_name=basename,
|
| 769 |
+
mime=mime_type,
|
| 770 |
+
key=dl_key,
|
| 771 |
+
help="Download this file"
|
| 772 |
+
)
|
| 773 |
+
except Exception as dl_e:
|
| 774 |
+
st.error(f"Download Error: {dl_e}")
|
| 775 |
+
with action_cols[2]:
|
| 776 |
+
delete_key = f"del_{item_key_base}"
|
| 777 |
+
if st.button("ποΈ", key=delete_key, help=f"Delete {basename}"):
|
| 778 |
+
try:
|
| 779 |
+
os.remove(file)
|
| 780 |
+
st.session_state['asset_checkboxes'][gallery_type].pop(file, None)
|
| 781 |
+
if file in st.session_state.get('layout_snapshots', []):
|
| 782 |
+
st.session_state['layout_snapshots'].remove(file)
|
| 783 |
+
logger.info(f"Deleted {gallery_type} asset: {file}")
|
| 784 |
+
st.toast(f"Deleted {basename}!", icon="β
")
|
| 785 |
+
st.rerun()
|
| 786 |
+
except OSError as e:
|
| 787 |
+
logger.error(f"Error deleting file {file}: {e}")
|
| 788 |
+
st.error(f"Could not delete {basename}")
|
| 789 |
+
except Exception as e:
|
| 790 |
+
st.error(f"Error displaying {basename}: {e}")
|
| 791 |
+
logger.error(f"Error displaying asset {file}: {e}")
|
| 792 |
+
st.markdown("---")
|
| 793 |
+
|
| 794 |
+
# --- UI Elements ---
|
| 795 |
+
st.sidebar.subheader("π€ AI Settings")
|
| 796 |
+
with st.sidebar.expander("API Inference Settings", expanded=False):
|
| 797 |
+
st.session_state.hf_custom_key = st.text_input(
|
| 798 |
+
"Custom HF Token",
|
| 799 |
+
value=st.session_state.get('hf_custom_key', ""),
|
| 800 |
+
type="password",
|
| 801 |
+
key="hf_custom_key_input"
|
| 802 |
+
)
|
| 803 |
+
token_status = "Custom Key Set" if st.session_state.hf_custom_key else ("Default HF_TOKEN Set" if HF_TOKEN else "No Token Set")
|
| 804 |
+
st.caption(f"HF Token Status: {token_status}")
|
| 805 |
+
providers_list = ["hf-inference", "cerebras", "together", "sambanova", "novita", "cohere", "fireworks-ai", "hyperbolic", "nebius"]
|
| 806 |
+
st.session_state.hf_provider = st.selectbox(
|
| 807 |
+
"HF Inference Provider",
|
| 808 |
+
options=providers_list,
|
| 809 |
+
index=providers_list.index(st.session_state.get('hf_provider', DEFAULT_PROVIDER)),
|
| 810 |
+
key="hf_provider_select"
|
| 811 |
+
)
|
| 812 |
+
st.session_state.hf_custom_api_model = st.text_input(
|
| 813 |
+
"Custom HF API Model ID",
|
| 814 |
+
value=st.session_state.get('hf_custom_api_model', ""),
|
| 815 |
+
key="hf_custom_model_input"
|
| 816 |
+
)
|
| 817 |
+
effective_hf_model = st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model
|
| 818 |
+
st.session_state.hf_selected_api_model = st.selectbox(
|
| 819 |
+
"Featured HF API Model",
|
| 820 |
+
options=FEATURED_MODELS_LIST,
|
| 821 |
+
index=FEATURED_MODELS_LIST.index(st.session_state.get('hf_selected_api_model', FEATURED_MODELS_LIST[0])),
|
| 822 |
+
key="hf_featured_model_select"
|
| 823 |
+
)
|
| 824 |
+
st.caption(f"Effective HF API Model: {effective_hf_model}")
|
| 825 |
+
if _openai_available:
|
| 826 |
+
st.session_state.openai_selected_model = st.selectbox(
|
| 827 |
+
"OpenAI Model",
|
| 828 |
+
options=OPENAI_MODELS_LIST,
|
| 829 |
+
index=OPENAI_MODELS_LIST.index(st.session_state.get('openai_selected_model', OPENAI_MODELS_LIST[0])),
|
| 830 |
+
key="openai_model_select"
|
| 831 |
+
)
|
| 832 |
+
|
| 833 |
+
with st.sidebar.expander("Local Model Selection", expanded=True):
|
| 834 |
+
if not _transformers_available:
|
| 835 |
+
st.warning("Transformers library not found. Cannot load local models.")
|
| 836 |
+
else:
|
| 837 |
+
local_model_options = ["None"] + list(st.session_state.get('local_models', {}).keys())
|
| 838 |
+
current_selection = st.session_state.get('selected_local_model_path', "None")
|
| 839 |
+
if current_selection not in local_model_options:
|
| 840 |
+
current_selection = "None"
|
| 841 |
+
selected_path = st.selectbox(
|
| 842 |
+
"Active Local Model",
|
| 843 |
+
options=local_model_options,
|
| 844 |
+
index=local_model_options.index(current_selection),
|
| 845 |
+
format_func=lambda x: os.path.basename(x) if x != "None" else "None",
|
| 846 |
+
key="local_model_selector"
|
| 847 |
+
)
|
| 848 |
+
st.session_state.selected_local_model_path = selected_path if selected_path != "None" else None
|
| 849 |
+
if st.session_state.selected_local_model_path:
|
| 850 |
+
model_info = st.session_state.local_models[st.session_state.selected_local_model_path]
|
| 851 |
+
st.caption(f"Type: {model_info.get('type', 'Unknown')}")
|
| 852 |
+
st.caption(f"Device: {model_info.get('model').device if model_info.get('model') else 'N/A'}")
|
| 853 |
+
else:
|
| 854 |
+
st.caption("No local model selected.")
|
| 855 |
+
|
| 856 |
+
with st.sidebar.expander("Generation Parameters", expanded=False):
|
| 857 |
+
st.session_state.gen_max_tokens = st.slider("Max New Tokens", 1, 4096, st.session_state.get('gen_max_tokens', 512), key="param_max_tokens")
|
| 858 |
+
st.session_state.gen_temperature = st.slider("Temperature", 0.01, 2.0, st.session_state.get('gen_temperature', 0.7), step=0.01, key="param_temp")
|
| 859 |
+
st.session_state.gen_top_p = st.slider("Top-P", 0.01, 1.0, st.session_state.get('gen_top_p', 0.95), step=0.01, key="param_top_p")
|
| 860 |
+
st.session_state.gen_frequency_penalty = st.slider("Repetition Penalty", 0.0, 1.0, st.session_state.get('gen_frequency_penalty', 0.0), step=0.05, key="param_repetition")
|
| 861 |
+
st.session_state.gen_seed = st.slider("Seed", -1, 65535, st.session_state.get('gen_seed', -1), step=1, key="param_seed")
|
| 862 |
+
|
| 863 |
+
st.sidebar.subheader("πΌοΈ Gallery Settings")
|
| 864 |
+
st.slider(
|
| 865 |
+
"Max Items Shown",
|
| 866 |
+
min_value=2,
|
| 867 |
+
max_value=50,
|
| 868 |
+
value=st.session_state.get('gallery_size', 10),
|
| 869 |
+
key="gallery_size_slider"
|
| 870 |
+
)
|
| 871 |
+
st.session_state.gallery_size = st.session_state.gallery_size_slider
|
| 872 |
+
st.sidebar.markdown("---")
|
| 873 |
+
update_gallery('image')
|
| 874 |
+
update_gallery('md')
|
| 875 |
+
update_gallery('pdf')
|
| 876 |
+
|
| 877 |
+
# --- Main Application ---
|
| 878 |
+
st.title("Vision & Layout Titans ππΌοΈπ")
|
| 879 |
+
st.markdown("Create PDFs from images and markdown, process with AI, and manage characters.")
|
| 880 |
+
tabs = st.tabs([
|
| 881 |
+
"Image/MD->PDF Layout πΌοΈβ‘οΈπ",
|
| 882 |
+
"Camera Snap π·",
|
| 883 |
+
"Download PDFs π₯",
|
| 884 |
+
"Build Titan (Local Models) π±",
|
| 885 |
+
"PDF Process (AI) π",
|
| 886 |
+
"Image Process (AI) πΌοΈ",
|
| 887 |
+
"Text Process (AI) π",
|
| 888 |
+
"Test OCR (AI) π",
|
| 889 |
+
"Test Image Gen (Diffusers) π¨",
|
| 890 |
+
"Character Editor π§βπ¨",
|
| 891 |
+
"Character Gallery πΌοΈ"
|
| 892 |
+
])
|
| 893 |
+
|
| 894 |
+
with tabs[0]:
|
| 895 |
+
st.header("Image/Markdown to PDF Layout Generator")
|
| 896 |
+
st.markdown("Select images and markdown files, reorder them, and generate a PDF.")
|
| 897 |
+
col1, col2 = st.columns(2)
|
| 898 |
+
with col1:
|
| 899 |
+
st.subheader("A. Select Assets")
|
| 900 |
+
selected_images = [f for f in get_typed_gallery_files('image') if st.session_state['asset_checkboxes']['image'].get(f, False)]
|
| 901 |
+
selected_mds = [f for f in get_typed_gallery_files('md') if st.session_state['asset_checkboxes']['md'].get(f, False)]
|
| 902 |
+
st.write(f"Selected Images: {len(selected_images)}")
|
| 903 |
+
st.write(f"Selected Markdown Files: {len(selected_mds)}")
|
| 904 |
+
with col2:
|
| 905 |
+
st.subheader("B. Review and Reorder")
|
| 906 |
+
layout_records = []
|
| 907 |
+
for idx, path in enumerate(selected_images + selected_mds, start=1):
|
| 908 |
+
is_md = path in selected_mds
|
| 909 |
+
try:
|
| 910 |
+
if is_md:
|
| 911 |
+
with open(path, 'r', encoding='utf-8') as f:
|
| 912 |
+
content = f.read(50)
|
| 913 |
+
layout_records.append({
|
| 914 |
+
"filename": os.path.basename(path),
|
| 915 |
+
"source": path,
|
| 916 |
+
"type": "Markdown",
|
| 917 |
+
"preview": content + "...",
|
| 918 |
+
"order": idx
|
| 919 |
+
})
|
| 920 |
+
else:
|
| 921 |
+
with Image.open(path) as im:
|
| 922 |
+
w, h = im.size
|
| 923 |
+
ar = round(w / h, 2) if h > 0 else 0
|
| 924 |
+
orient = "Square" if 0.9 <= ar <= 1.1 else ("Landscape" if ar > 1.1 else "Portrait")
|
| 925 |
+
layout_records.append({
|
| 926 |
+
"filename": os.path.basename(path),
|
| 927 |
+
"source": path,
|
| 928 |
+
"type": "Image",
|
| 929 |
+
"width": w,
|
| 930 |
+
"height": h,
|
| 931 |
+
"aspect_ratio": ar,
|
| 932 |
+
"orientation": orient,
|
| 933 |
+
"order": idx
|
| 934 |
+
})
|
| 935 |
+
except Exception as e:
|
| 936 |
+
logger.warning(f"Could not process {path}: {e}")
|
| 937 |
+
st.warning(f"Skipping invalid file: {os.path.basename(path)}")
|
| 938 |
+
if not layout_records:
|
| 939 |
+
st.infoperiod
|