Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
from bs4 import BeautifulSoup
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import time
|
| 6 |
+
import os
|
| 7 |
+
import json
|
| 8 |
+
|
| 9 |
+
def get_rank_papers(url, progress=gr.Progress(track_tqdm=True)):
|
| 10 |
+
base_url = "https://paperswithcode.com"
|
| 11 |
+
session = requests.Session()
|
| 12 |
+
headers = {
|
| 13 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
|
| 14 |
+
'Cache-Control': 'no-cache'
|
| 15 |
+
}
|
| 16 |
+
print("Time run at : ", time.ctime())
|
| 17 |
+
offset = 0
|
| 18 |
+
data_list = {}
|
| 19 |
+
break_duplicate = 10
|
| 20 |
+
|
| 21 |
+
while True:
|
| 22 |
+
response = session.get(url, headers=headers, params={'page': offset})
|
| 23 |
+
if response.status_code != 200:
|
| 24 |
+
print('Failed to retrieve data')
|
| 25 |
+
break
|
| 26 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
| 27 |
+
paper_info = soup.find_all('div', class_='row infinite-item item paper-card')
|
| 28 |
+
if not paper_info:
|
| 29 |
+
break
|
| 30 |
+
for ppr in paper_info:
|
| 31 |
+
title = ppr.find('h1').text.strip()
|
| 32 |
+
|
| 33 |
+
if "paper" in ppr.find('a')['href']:
|
| 34 |
+
link = base_url + ppr.find('a')['href']
|
| 35 |
+
else:
|
| 36 |
+
link = ppr.find('a')['href']
|
| 37 |
+
Github_Star = ppr.find('span', class_='badge badge-secondary').text.strip().replace(',', '')
|
| 38 |
+
pdf_link = ''
|
| 39 |
+
try:
|
| 40 |
+
response_link = session.get(link, headers=headers)
|
| 41 |
+
soup_link = BeautifulSoup(response_link.text, 'html.parser')
|
| 42 |
+
paper_info_link = soup_link.find_all('div', class_='paper-abstract')
|
| 43 |
+
pdf_link = paper_info_link[0].find('div', class_='col-md-12').find('a')['href']
|
| 44 |
+
except:
|
| 45 |
+
pass
|
| 46 |
+
if title not in data_list:
|
| 47 |
+
data_list[title] = {'link': link, 'Github Star': int(Github_Star), 'pdf_link': pdf_link.strip()}
|
| 48 |
+
else:
|
| 49 |
+
break_duplicate -= 1
|
| 50 |
+
if break_duplicate == 0:
|
| 51 |
+
return data_list
|
| 52 |
+
offset += 1
|
| 53 |
+
progress.update(offset)
|
| 54 |
+
print('Data retrieval complete')
|
| 55 |
+
return data_list
|
| 56 |
+
|
| 57 |
+
def load_cached_data(cache_file):
|
| 58 |
+
if os.path.exists(cache_file):
|
| 59 |
+
with open(cache_file, 'r') as f:
|
| 60 |
+
return json.load(f)
|
| 61 |
+
return None
|
| 62 |
+
|
| 63 |
+
def save_cached_data(data, cache_file):
|
| 64 |
+
with open(cache_file, 'w') as f:
|
| 65 |
+
json.dump(data, f)
|
| 66 |
+
|
| 67 |
+
def format_dataframe(data):
|
| 68 |
+
df = pd.DataFrame(data).T
|
| 69 |
+
df['title'] = df.index
|
| 70 |
+
df = df[['title', 'Github Star', 'link', 'pdf_link']]
|
| 71 |
+
return df
|
| 72 |
+
|
| 73 |
+
def load_and_cache_data(url, cache_file):
|
| 74 |
+
cached_data = load_cached_data(cache_file)
|
| 75 |
+
|
| 76 |
+
if cached_data:
|
| 77 |
+
print(f"Loading cached data from {cache_file}")
|
| 78 |
+
return cached_data
|
| 79 |
+
|
| 80 |
+
print(f"Fetching new data from {url}")
|
| 81 |
+
new_data = get_rank_papers(url)
|
| 82 |
+
save_cached_data(new_data, cache_file)
|
| 83 |
+
return new_data
|
| 84 |
+
|
| 85 |
+
def update_display(category):
|
| 86 |
+
cache_file = f"{category}_papers_cache.json"
|
| 87 |
+
url = f"https://paperswithcode.com/{category}" if category != "top" else "https://paperswithcode.com/"
|
| 88 |
+
|
| 89 |
+
data = load_and_cache_data(url, cache_file)
|
| 90 |
+
df = format_dataframe(data)
|
| 91 |
+
|
| 92 |
+
return len(df), df
|
| 93 |
+
|
| 94 |
+
def load_all_data():
|
| 95 |
+
top_count, top_df = update_display("top")
|
| 96 |
+
new_count, new_df = update_display("latest")
|
| 97 |
+
greatest_count, greatest_df = update_display("greatest")
|
| 98 |
+
return top_count, top_df, new_count, new_df, greatest_count, greatest_df
|
| 99 |
+
|
| 100 |
+
def save_dataframe_generic(df, filename):
|
| 101 |
+
try:
|
| 102 |
+
df.to_csv(filename, index=False)
|
| 103 |
+
return "Dataframe saved successfully."
|
| 104 |
+
except Exception as e:
|
| 105 |
+
return f"Error saving dataframe: {e}"
|
| 106 |
+
|
| 107 |
+
def load_dataframe_generic(filename):
|
| 108 |
+
try:
|
| 109 |
+
if os.path.exists(filename):
|
| 110 |
+
df = pd.read_csv(filename)
|
| 111 |
+
return df, "Dataframe loaded successfully."
|
| 112 |
+
else:
|
| 113 |
+
return pd.DataFrame(), "Dataframe file not found."
|
| 114 |
+
except Exception as e:
|
| 115 |
+
return pd.DataFrame(), f"Error loading dataframe: {e}"
|
| 116 |
+
|
| 117 |
+
with gr.Blocks() as demo:
|
| 118 |
+
gr.Markdown("<h1><center>Papers Leaderboard</center></h1>")
|
| 119 |
+
|
| 120 |
+
with gr.Tab("Top Trending Papers"):
|
| 121 |
+
top_count = gr.Textbox(label="Number of Papers Fetched")
|
| 122 |
+
top_df = gr.DataFrame(interactive=True)
|
| 123 |
+
top_button = gr.Button("Refresh Leaderboard")
|
| 124 |
+
top_load_button = gr.Button("Load Dataframe")
|
| 125 |
+
top_save_button = gr.Button("Save Dataframe")
|
| 126 |
+
top_save_status = gr.Textbox(label="Status")
|
| 127 |
+
|
| 128 |
+
top_button.click(fn=lambda: update_display("top"), inputs=None, outputs=[top_count, top_df])
|
| 129 |
+
top_save_button.click(fn=lambda df: save_dataframe_generic(df, 'top_dataframe.csv'), inputs=top_df, outputs=top_save_status)
|
| 130 |
+
top_load_button.click(fn=lambda: load_dataframe_generic('top_dataframe.csv'), inputs=None, outputs=[top_df, top_save_status])
|
| 131 |
+
|
| 132 |
+
with gr.Tab("New Papers"):
|
| 133 |
+
new_count = gr.Textbox(label="Number of Papers Fetched")
|
| 134 |
+
new_df = gr.DataFrame(interactive=True)
|
| 135 |
+
new_button = gr.Button("Refresh Leaderboard")
|
| 136 |
+
new_load_button = gr.Button("Load Dataframe")
|
| 137 |
+
new_save_button = gr.Button("Save Dataframe")
|
| 138 |
+
new_save_status = gr.Textbox(label="Status")
|
| 139 |
+
|
| 140 |
+
new_button.click(fn=lambda: update_display("latest"), inputs=None, outputs=[new_count, new_df])
|
| 141 |
+
new_save_button.click(fn=lambda df: save_dataframe_generic(df, 'new_dataframe.csv'), inputs=new_df, outputs=new_save_status)
|
| 142 |
+
new_load_button.click(fn=lambda: load_dataframe_generic('new_dataframe.csv'), inputs=None, outputs=[new_df, new_save_status])
|
| 143 |
+
|
| 144 |
+
with gr.Tab("Greatest Papers"):
|
| 145 |
+
greatest_count = gr.Textbox(label="Number of Papers Fetched")
|
| 146 |
+
greatest_df = gr.DataFrame(interactive=True)
|
| 147 |
+
greatest_button = gr.Button("Refresh Leaderboard")
|
| 148 |
+
greatest_load_button = gr.Button("Load Dataframe")
|
| 149 |
+
greatest_save_button = gr.Button("Save Dataframe")
|
| 150 |
+
greatest_save_status = gr.Textbox(label="Status")
|
| 151 |
+
|
| 152 |
+
greatest_button.click(fn=lambda: update_display("greatest"), inputs=None, outputs=[greatest_count, greatest_df])
|
| 153 |
+
greatest_save_button.click(fn=lambda df: save_dataframe_generic(df, 'greatest_dataframe.csv'), inputs=greatest_df, outputs=greatest_save_status)
|
| 154 |
+
greatest_load_button.click(fn=lambda: load_dataframe_generic('greatest_dataframe.csv'), inputs=None, outputs=[greatest_df, greatest_save_status])
|
| 155 |
+
|
| 156 |
+
# Load initial data for all tabs
|
| 157 |
+
demo.load(fn=load_all_data, outputs=[top_count, top_df, new_count, new_df, greatest_count, greatest_df])
|
| 158 |
+
|
| 159 |
+
# Launch the Gradio interface with a public link
|
| 160 |
+
demo.launch(share=True)
|