Spaces:
Sleeping
Sleeping
import streamlit as st | |
from surprise import Dataset, Reader, SVD | |
from surprise.model_selection import train_test_split | |
import pandas as pd | |
# Sample user-item rating data for collaborative filtering | |
data = {'user_id': [1, 1, 1, 2, 2, 3, 3, 4, 4], | |
'item_id': [1, 2, 3, 1, 4, 2, 3, 1, 4], | |
'rating': [5, 3, 4, 4, 5, 5, 2, 4, 4]} | |
df = pd.DataFrame(data) | |
reader = Reader(rating_scale=(1, 5)) | |
dataset = Dataset.load_from_df(df[['user_id', 'item_id', 'rating']], reader) | |
trainset, testset = train_test_split(dataset, test_size=0.25) | |
algo = SVD() | |
algo.fit(trainset) | |
# UI Elements | |
st.title("π Personalized Entertainment Recommendations") | |
# Input for user genre preference | |
user_genre = st.selectbox( | |
"Choose your favorite genre", | |
["Action π¬", "Drama π", "Comedy π", "Sci-Fi π"] | |
) | |
# Define genre mapping | |
genre_mapping = { | |
"Action π¬": 1, | |
"Drama π": 2, | |
"Comedy π": 3, | |
"Sci-Fi π": 4 | |
} | |
# Example mapping of genre to item_id | |
recommendations = { | |
1: ["Die Hard", "Mad Max"], | |
2: ["The Shawshank Redemption", "Forrest Gump"], | |
3: ["Superbad", "Step Brothers"], | |
4: ["Inception", "Interstellar"] | |
} | |
# Provide recommendation based on collaborative filtering | |
selected_genre_id = genre_mapping[user_genre] | |
# Predict ratings for the selected genre items | |
predicted_ratings = [(id, algo.predict(5, id).est) for id in [1, 2, 3, 4] if id == selected_genre_id] | |
# Sort recommendations by predicted ratings | |
predicted_ratings.sort(key=lambda x: x[1], reverse=True) | |
st.subheader("π― Recommendations for you:") | |
for item_id, rating in predicted_ratings: | |
for rec in recommendations[item_id]: | |
st.write(f"{rec} - Predicted Rating: {rating:.2f} β") | |
# Provide visual feedback for actions | |
if predicted_ratings: | |
st.button("π Like", key="like_button") | |
st.button("π Dislike", key="dislike_button") | |
else: | |
st.write("No recommendations available for your selected genre.") |