Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
def create_main_pdf(markdown_text):
|
|
|
2 |
buffer = io.BytesIO()
|
3 |
doc = SimpleDocTemplate(
|
4 |
buffer,
|
@@ -25,7 +151,7 @@ def create_main_pdf(markdown_text):
|
|
25 |
for col in (left_column, right_column):
|
26 |
for item in col:
|
27 |
if isinstance(item, list):
|
28 |
-
main_item, sub_items = item
|
29 |
total_items += 1 + len(sub_items)
|
30 |
else:
|
31 |
total_items += 1
|
@@ -39,7 +165,7 @@ def create_main_pdf(markdown_text):
|
|
39 |
# Create custom styles
|
40 |
title_style = styles['Heading1']
|
41 |
title_style.textColor = colors.darkblue
|
42 |
-
title_style.alignment = 1
|
43 |
title_style.fontSize = min(16, base_font_size * 1.5)
|
44 |
|
45 |
section_style = ParagraphStyle(
|
@@ -128,4 +254,21 @@ def create_main_pdf(markdown_text):
|
|
128 |
story.append(table)
|
129 |
doc.build(story)
|
130 |
buffer.seek(0)
|
131 |
-
return buffer.getvalue()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import base64
|
3 |
+
from reportlab.lib.pagesizes import A4
|
4 |
+
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle
|
5 |
+
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
6 |
+
from reportlab.lib import colors
|
7 |
+
import io
|
8 |
+
import re
|
9 |
+
|
10 |
+
# Define the ML outline as a markdown string
|
11 |
+
ml_markdown = """# Cutting-Edge ML Outline
|
12 |
+
|
13 |
+
## Core ML Techniques
|
14 |
+
1. π **Mixture of Experts (MoE)**
|
15 |
+
- Conditional computation techniques
|
16 |
+
- Sparse gating mechanisms
|
17 |
+
- Training specialized sub-models
|
18 |
+
|
19 |
+
2. π₯ **Supervised Fine-Tuning (SFT) using PyTorch**
|
20 |
+
- Loss function customization
|
21 |
+
- Gradient accumulation strategies
|
22 |
+
- Learning rate schedulers
|
23 |
+
|
24 |
+
3. π€ **Large Language Models (LLM) using Transformers**
|
25 |
+
- Attention mechanisms
|
26 |
+
- Tokenization strategies
|
27 |
+
- Position encodings
|
28 |
+
|
29 |
+
## Training Methods
|
30 |
+
4. π **Self-Rewarding Learning using NPS 0-10 and Verbatims**
|
31 |
+
- Custom reward functions
|
32 |
+
- Feedback categorization
|
33 |
+
- Signal extraction from text
|
34 |
+
|
35 |
+
5. π **Reinforcement Learning from Human Feedback (RLHF)**
|
36 |
+
- Preference datasets
|
37 |
+
- PPO implementation
|
38 |
+
- KL divergence constraints
|
39 |
+
|
40 |
+
6. π **MergeKit: Merging Models to Same Embedding Space**
|
41 |
+
- TIES merging
|
42 |
+
- Task arithmetic
|
43 |
+
- SLERP interpolation
|
44 |
+
|
45 |
+
## Optimization & Deployment
|
46 |
+
7. π **DistillKit: Model Size Reduction with Spectrum Analysis**
|
47 |
+
- Knowledge distillation
|
48 |
+
- Quantization techniques
|
49 |
+
- Model pruning strategies
|
50 |
+
|
51 |
+
8. π§ **Agentic RAG Agents using Document Inputs**
|
52 |
+
- Vector database integration
|
53 |
+
- Query planning
|
54 |
+
- Self-reflection mechanisms
|
55 |
+
|
56 |
+
9. β³ **Longitudinal Data Summarization from Multiple Docs**
|
57 |
+
- Multi-document compression
|
58 |
+
- Timeline extraction
|
59 |
+
- Entity tracking
|
60 |
+
|
61 |
+
## Knowledge Representation
|
62 |
+
10. π **Knowledge Extraction using Markdown Knowledge Graphs**
|
63 |
+
- Entity recognition
|
64 |
+
- Relationship mapping
|
65 |
+
- Hierarchical structuring
|
66 |
+
|
67 |
+
11. πΊοΈ **Knowledge Mapping with Mermaid Diagrams**
|
68 |
+
- Flowchart generation
|
69 |
+
- Sequence diagram creation
|
70 |
+
- State diagrams
|
71 |
+
|
72 |
+
12. π» **ML Code Generation with Streamlit/Gradio/HTML5+JS**
|
73 |
+
- Code completion
|
74 |
+
- Unit test generation
|
75 |
+
- Documentation synthesis
|
76 |
+
"""
|
77 |
+
|
78 |
+
# Process multilevel markdown for PDF output
|
79 |
+
def markdown_to_pdf_content(markdown_text):
|
80 |
+
"""Convert markdown text to a format suitable for PDF generation"""
|
81 |
+
lines = markdown_text.strip().split('\n')
|
82 |
+
pdf_content = []
|
83 |
+
in_list_item = False
|
84 |
+
current_item = None
|
85 |
+
sub_items = []
|
86 |
+
|
87 |
+
for line in lines:
|
88 |
+
line = line.strip()
|
89 |
+
if not line:
|
90 |
+
continue
|
91 |
+
|
92 |
+
if line.startswith('# '):
|
93 |
+
pass
|
94 |
+
elif line.startswith('## '):
|
95 |
+
if current_item and sub_items:
|
96 |
+
pdf_content.append([current_item, sub_items])
|
97 |
+
sub_items = []
|
98 |
+
current_item = None
|
99 |
+
|
100 |
+
section = line.replace('## ', '').strip()
|
101 |
+
pdf_content.append(f"<b>{section}</b>")
|
102 |
+
in_list_item = False
|
103 |
+
elif re.match(r'^\d+\.', line):
|
104 |
+
if current_item and sub_items:
|
105 |
+
pdf_content.append([current_item, sub_items])
|
106 |
+
sub_items = []
|
107 |
+
|
108 |
+
current_item = line.strip()
|
109 |
+
in_list_item = True
|
110 |
+
elif line.startswith('- ') and in_list_item:
|
111 |
+
sub_items.append(line.strip())
|
112 |
+
else:
|
113 |
+
if not in_list_item:
|
114 |
+
pdf_content.append(line.strip())
|
115 |
+
|
116 |
+
if current_item and sub_items:
|
117 |
+
pdf_content.append([current_item, sub_items])
|
118 |
+
|
119 |
+
mid_point = len(pdf_content) // 2
|
120 |
+
left_column = pdf_content[:mid_point]
|
121 |
+
right_column = pdf_content[mid_point:]
|
122 |
+
|
123 |
+
return left_column, right_column
|
124 |
+
|
125 |
+
# Main PDF creation using ReportLab
|
126 |
def create_main_pdf(markdown_text):
|
127 |
+
"""Create a single-page landscape PDF with the outline in two columns"""
|
128 |
buffer = io.BytesIO()
|
129 |
doc = SimpleDocTemplate(
|
130 |
buffer,
|
|
|
151 |
for col in (left_column, right_column):
|
152 |
for item in col:
|
153 |
if isinstance(item, list):
|
154 |
+
main_item, sub_items = item
|
155 |
total_items += 1 + len(sub_items)
|
156 |
else:
|
157 |
total_items += 1
|
|
|
165 |
# Create custom styles
|
166 |
title_style = styles['Heading1']
|
167 |
title_style.textColor = colors.darkblue
|
168 |
+
title_style.alignment = 1
|
169 |
title_style.fontSize = min(16, base_font_size * 1.5)
|
170 |
|
171 |
section_style = ParagraphStyle(
|
|
|
254 |
story.append(table)
|
255 |
doc.build(story)
|
256 |
buffer.seek(0)
|
257 |
+
return buffer.getvalue()
|
258 |
+
|
259 |
+
# Streamlit UI
|
260 |
+
st.title("π Cutting-Edge ML Outline Generator")
|
261 |
+
|
262 |
+
if st.button("Generate Main PDF"):
|
263 |
+
with st.spinner("Generating PDF..."):
|
264 |
+
pdf_bytes = create_main_pdf(ml_markdown)
|
265 |
+
st.download_button(
|
266 |
+
label="Download Main PDF",
|
267 |
+
data=pdf_bytes,
|
268 |
+
file_name="ml_outline.pdf",
|
269 |
+
mime="application/pdf"
|
270 |
+
)
|
271 |
+
base64_pdf = base64.b64encode(pdf_bytes).decode('utf-8')
|
272 |
+
pdf_display = f'<embed src="data:application/pdf;base64,{base64_pdf}" width="100%" height="400px" type="application/pdf">'
|
273 |
+
st.markdown(pdf_display, unsafe_allow_html=True)
|
274 |
+
st.success("PDF generated successfully!")
|