File size: 7,473 Bytes
edc20ce
 
 
 
eabaf86
 
 
 
edc20ce
eabaf86
 
 
 
 
 
 
 
 
 
 
edc20ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eabaf86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edc20ce
56286b1
 
eabaf86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56286b1
 
eabaf86
 
edc20ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eabaf86
 
 
 
 
edc20ce
 
8c56a9e
 
edc20ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eabaf86
edc20ce
 
 
eabaf86
edc20ce
 
 
eabaf86
 
 
 
 
 
 
 
edc20ce
 
 
 
 
eabaf86
 
 
 
 
edc20ce
 
 
 
 
 
eabaf86
 
 
 
edc20ce
d2a996e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import gradio as gr
import os 
import sys
from pathlib import Path
from PIL import Image
import re
from PIL import Image
import numpy as np

# Coder: Create directories if they don't exist
if not os.path.exists('saved_prompts'):
    os.makedirs('saved_prompts')

if not os.path.exists('saved_images'):
    os.makedirs('saved_images')
    
# Humanities: Elegant function to generate a safe filename 📝
def generate_safe_filename(text):
    return re.sub('[^a-zA-Z0-9]', '_', text)
    
def load_models_from_file(filename):
    with open(filename, 'r') as f:
        return [line.strip() for line in f]

if __name__ == "__main__":
    models = load_models_from_file('models.txt')
    print(models)
    #removed to removed.txt
    
current_model = models[0]

text_gen1=gr.Interface.load("spaces/Omnibus/MagicPrompt-Stable-Diffusion_link")
models2 = [gr.Interface.load(f"models/{model}", live=True, preprocess=False) for model in models]


   
def text_it1(inputs,text_gen1=text_gen1):
        go_t1=text_gen1(inputs)
        return(go_t1)

def set_model(current_model):
    current_model = models[current_model]
    return gr.update(label=(f"{current_model}"))

# Analysis: Function to list saved prompts and images 📊
def list_saved_prompts_and_images():
    saved_prompts = os.listdir('saved_prompts')
    saved_images = os.listdir('saved_images')

    html_str = "<h2>Saved Prompts and Images:</h2><ul>"
    for prompt_file in saved_prompts:
        image_file = f"{prompt_file[:-4]}.png"
        if image_file in saved_images:
            html_str += f'<li>Prompt: {prompt_file[:-4]} | <a href="saved_images/{image_file}" download>Download Image</a></li>'
    html_str += "</ul>"
    
    return html_str

# Coder: Modified function to save the prompt and image 🖼️
def send_it1(inputs, model_choice):
    proc1 = models2[model_choice]
    output1 = proc1(inputs)
    
    safe_filename = generate_safe_filename(inputs[0])
    image_path = f"saved_images/{safe_filename}.png"
    prompt_path = f"saved_prompts/{safe_filename}.txt"

    with open(prompt_path, 'w') as f:
        f.write(inputs[0])

    # Check the type of output1 before saving
    if isinstance(output1, np.ndarray):  # If it's a numpy array
        Image.fromarray(np.uint8(output1)).save(image_path)
    elif isinstance(output1, Image.Image):  # If it's already a PIL Image
        output1.save(image_path)
    elif isinstance(output1, str):  # If it's a string (this should not happen in ideal conditions)
        print(f"Warning: output1 is a string. Cannot save as image. Value: {output1}")
    else:
        print(f"Warning: Unexpected type {type(output1)} for output1.")
        
    #Image.fromarray(output1).save(image_path)

    saved_output.update(list_saved_prompts_and_images())
    
    return output1


    
css=""""""


with gr.Blocks(css=css) as myface:
    gr.HTML("""<!DOCTYPE html>
<html lang="en">
  <head>
    <meta charset="utf-8" />
    <meta name="twitter:card" content="player"/>
    <meta name="twitter:site" content=""/>
    <meta name="twitter:player" content="https://omnibus-maximum-multiplier-places.hf.space"/>
    <meta name="twitter:player:stream" content="https://omnibus-maximum-multiplier-places.hf.space"/>
    <meta name="twitter:player:width" content="100%"/>
    <meta name="twitter:player:height" content="600"/>    
    <meta property="og:title" content="Embedded Live Viewer"/>
    <meta property="og:description" content="Tweet Genie - A Huggingface Space"/>
    <meta property="og:image" content="https://cdn.glitch.global/80dbe92e-ce75-44af-84d5-74a2e21e9e55/omnicard.png?v=1676772531627"/>
    <!--<meta http-equiv="refresh" content="0; url=https://huggingface.co/spaces/corbt/tweet-genie">-->
  </head>
</html>
""")

    with gr.Row():
        with gr.Column(scale=100):
            saved_output = gr.HTML(label="Saved Prompts and Images")

    with gr.Row():
        with gr.Tab("Title"):
                gr.HTML("""<title>Prompt to Generate Image</title><div style="text-align: center; max-width: 1500px; margin: 0 auto;">
                <h1>Enter a Prompt in Textbox then click Generate Image</h1>""")

        with gr.Tab("Tools"):
                    with gr.Tab("View"):
                      with gr.Row():
                        with gr.Column(style="width=50%, height=70%"):
                                gr.Pil(label="Crop")
                        with gr.Column(style="width=50%, height=70%"):
                                gr.Pil(label="Crop")
                            
                    with gr.Tab("Draw"):
                        with gr.Column(style="width=50%, height=70%"):
                                gr.Pil(label="Crop")
                        with gr.Column(style="width=50%, height=70%"):
                                gr.Pil(label="Draw")
                                gr.ImagePaint(label="Draw")
                                    
                    with gr.Tab("Text"):
                        with gr.Row():
                            with gr.Column(scale=50):
                                gr.Textbox(label="", lines=8, interactive=True)            
                            with gr.Column(scale=50):
                                gr.Textbox(label="", lines=8, interactive=True)

                    with gr.Tab("Color Picker"):
                        with gr.Row():
                            with gr.Column(scale=50):
                                gr.ColorPicker(label="Color", interactive=True)            
                            with gr.Column(scale=50):
                                gr.ImagePaint(label="Draw", interactive=True)      
    with gr.Row():
        with gr.Column(scale=100):
            magic1=gr.Textbox(lines=4)
            run=gr.Button("Generate Image")
            
    with gr.Row():
        with gr.Column(scale=100):
            model_name1 = gr.Dropdown(label="Select Model", choices=[m for m in models], type="index", value=current_model, interactive=True)

    with gr.Row():
        with gr.Column(style="width=800px"):
            output1=gr.Image(label=(f"{current_model}"))
            # Check the type before attempting to save the image
            if isinstance(output1, Image.Image):  # Check if it's a PIL Image object
                output1.save(image_path)
            elif isinstance(output1, np.ndarray):  # Check if it's a NumPy array
                Image.fromarray(np.array(output1, dtype=np.uint8)).save(image_path)
            else:
                print(f"Warning: Unexpected type {type(output1)} for output1.")
                            
    with gr.Row():
        with gr.Column(scale=50):
            input_text=gr.Textbox(label="Prompt Idea",lines=2)
            use_short=gr.Button("Use Short Prompt")
            see_prompts=gr.Button("Extend Idea")
    
    with gr.Row():
        with gr.Column(scale=100):
            saved_output = gr.HTML(label=list_saved_prompts_and_images(), live=True)
                    
    def short_prompt(inputs):
        return(inputs)
    
    use_short.click(short_prompt,inputs=[input_text],outputs=magic1)
    see_prompts.click(text_it1,inputs=[input_text],outputs=magic1)
    
    # Reasoning: Link functions to Gradio components 🎛️
    model_name1.change(set_model, inputs=model_name1, outputs=[output1])
    run.click(send_it1, inputs=[magic1, model_name1], outputs=[output1])

myface.queue(concurrency_count=200)
myface.launch(inline=True, show_api=False, max_threads=400)