awacke1's picture
Update app.py
2246d61
raw
history blame
8.02 kB
import gradio as gr
import os
import sys
from pathlib import Path
from PIL import Image
import re
import base64
from io import BytesIO
import numpy as np
# Coder: Create directories if they don't exist
if not os.path.exists('saved_prompts'):
os.makedirs('saved_prompts')
if not os.path.exists('saved_images'):
os.makedirs('saved_images')
# New addition: Function to convert PIL Image to base64 encoded string
def image_to_base64(img):
buffered = BytesIO()
img.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
# Humanities: Elegant function to generate a safe filename 📝
def generate_safe_filename(text):
return re.sub('[^a-zA-Z0-9]', '_', text)
def load_models_from_file(filename):
with open(filename, 'r') as f:
return [line.strip() for line in f]
if __name__ == "__main__":
models = load_models_from_file('models.txt')
print(models)
#removed to removed.txt
current_model = models[0]
text_gen1=gr.Interface.load("spaces/Omnibus/MagicPrompt-Stable-Diffusion_link")
models2 = [gr.Interface.load(f"models/{model}", live=True, preprocess=False) for model in models]
def text_it1(inputs,text_gen1=text_gen1):
go_t1=text_gen1(inputs)
return(go_t1)
def set_model(current_model):
current_model = models[current_model]
return gr.update(label=(f"{current_model}"))
# Analysis: Function to list saved prompts and images 📊
def list_saved_prompts_and_images():
saved_prompts = os.listdir('saved_prompts')
saved_images = os.listdir('saved_images')
html_str = "<h2>Saved Prompts and Images:</h2><ul>"
for prompt_file in saved_prompts:
image_file = f"{prompt_file[:-4]}.png"
if image_file in saved_images:
html_str += f'<li>Prompt: {prompt_file[:-4]} | <a href="saved_images/{image_file}" download>Download Image</a></li>'
html_str += "</ul>"
return html_str
# Coder: Modified function to save the prompt and image and create download link
def send_it1(inputs, model_choice, download_link):
proc1 = models2[model_choice]
output1 = proc1(inputs)
safe_filename = generate_safe_filename(inputs[0])
image_path = f"saved_images/{safe_filename}.png"
prompt_path = f"saved_prompts/{safe_filename}.txt"
with open(prompt_path, 'w') as f:
f.write(inputs[0])
# Check the type of output1 before saving
if isinstance(output1, np.ndarray): # If it's a numpy array
Image.fromarray(np.uint8(output1)).save(image_path)
elif isinstance(output1, Image.Image): # If it's already a PIL Image
output1.save(image_path)
elif isinstance(output1, str): # If it's a string (this should not happen in ideal conditions)
print(f"Warning: output1 is a string. Cannot save as image. Value: {output1}")
else:
print(f"Warning: Unexpected type {type(output1)} for output1.")
saved_output.update(list_saved_prompts_and_images())
# Encode image as base64
img_base64 = ""
if isinstance(output1, Image.Image):
img_base64 = image_to_base64(output1)
# Update HTML component with download link
download_html = f'<a href="data:image/png;base64,{img_base64}" download="{safe_filename}.png">Download Image</a>'
download_link.update(download_html)
return output1
css=""""""
with gr.Blocks(css=css) as myface:
gr.HTML("""<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="twitter:card" content="player"/>
<meta name="twitter:site" content=""/>
<meta name="twitter:player" content="https://omnibus-maximum-multiplier-places.hf.space"/>
<meta name="twitter:player:stream" content="https://omnibus-maximum-multiplier-places.hf.space"/>
<meta name="twitter:player:width" content="100%"/>
<meta name="twitter:player:height" content="600"/>
<meta property="og:title" content="Embedded Live Viewer"/>
<meta property="og:description" content="Tweet Genie - A Huggingface Space"/>
<meta property="og:image" content="https://cdn.glitch.global/80dbe92e-ce75-44af-84d5-74a2e21e9e55/omnicard.png?v=1676772531627"/>
<!--<meta http-equiv="refresh" content="0; url=https://huggingface.co/spaces/corbt/tweet-genie">-->
</head>
</html>
""")
with gr.Row():
with gr.Column(scale=100):
saved_output = gr.HTML(label="Saved Prompts and Images")
with gr.Row():
with gr.Tab("Title"):
gr.HTML("""<title>Prompt to Generate Image</title><div style="text-align: center; max-width: 1500px; margin: 0 auto;">
<h1>Enter a Prompt in Textbox then click Generate Image</h1>""")
with gr.Tab("Tools"):
with gr.Tab("View"):
with gr.Row():
with gr.Column(style="width=50%, height=70%"):
gr.Pil(label="Crop")
with gr.Column(style="width=50%, height=70%"):
gr.Pil(label="Crop")
with gr.Tab("Draw"):
with gr.Column(style="width=50%, height=70%"):
gr.Pil(label="Crop")
with gr.Column(style="width=50%, height=70%"):
gr.Pil(label="Draw")
gr.ImagePaint(label="Draw")
with gr.Tab("Text"):
with gr.Row():
with gr.Column(scale=50):
gr.Textbox(label="", lines=8, interactive=True)
with gr.Column(scale=50):
gr.Textbox(label="", lines=8, interactive=True)
with gr.Tab("Color Picker"):
with gr.Row():
with gr.Column(scale=50):
gr.ColorPicker(label="Color", interactive=True)
with gr.Column(scale=50):
gr.ImagePaint(label="Draw", interactive=True)
with gr.Row():
with gr.Column(scale=100):
magic1=gr.Textbox(lines=4)
run=gr.Button("Generate Image")
with gr.Row():
with gr.Column(scale=100):
model_name1 = gr.Dropdown(label="Select Model", choices=[m for m in models], type="index", value=current_model, interactive=True)
with gr.Row():
with gr.Column(style="width=800px"):
output1=gr.Image(label=(f"{current_model}"))
# Check the type before attempting to save the image
if isinstance(output1, Image.Image): # Check if it's a PIL Image object
output1.save(image_path)
elif isinstance(output1, np.ndarray): # Check if it's a NumPy array
Image.fromarray(np.array(output1, dtype=np.uint8)).save(image_path)
else:
print(f"Warning: Unexpected type {type(output1)} for output1.")
with gr.Row():
with gr.Column(scale=50):
input_text=gr.Textbox(label="Prompt Idea",lines=2)
use_short=gr.Button("Use Short Prompt")
see_prompts=gr.Button("Extend Idea")
with gr.Row():
with gr.Column(scale=100):
saved_output = gr.HTML(label=list_saved_prompts_and_images(), live=True)
def short_prompt(inputs):
return(inputs)
use_short.click(short_prompt,inputs=[input_text],outputs=magic1)
see_prompts.click(text_it1,inputs=[input_text],outputs=magic1)
# Reasoning: Link functions to Gradio components 🎛️
model_name1.change(set_model, inputs=model_name1, outputs=[output1])
run.click(send_it1, inputs=[magic1, model_name1], outputs=[output1])
myface.queue(concurrency_count=200)
myface.launch(inline=True, show_api=False, max_threads=400)