awacke1's picture
Update app.py
af56cbc
raw
history blame
7.18 kB
import gradio as gr
import os
import sys
from pathlib import Path
from PIL import Image
import re
import numpy as np
# Create directories if they don't exist
if not os.path.exists('saved_prompts'):
os.makedirs('saved_prompts')
if not os.path.exists('saved_images'):
os.makedirs('saved_images')
# Function to generate a safe filename
def generate_safe_filename(text):
return re.sub('[^a-zA-Z0-9]', '_', text)
# Function to load models from a text file
def load_models_from_file(filename):
with open(filename, 'r') as f:
return [line.strip() for line in f]
if __name__ == "__main__":
models = load_models_from_file('models.txt')
print(models)
current_model = models[0]
text_gen1 = gr.Interface.load("spaces/Omnibus/MagicPrompt-Stable-Diffusion_link")
models2 = [gr.Interface.load(f"models/{model}", live=True, preprocess=False) for model in models]
# Function to trigger text generation
def text_it1(inputs, text_gen1=text_gen1):
go_t1 = text_gen1(inputs)
return (go_t1)
# Function to set the current model
def set_model(current_model):
current_model = models[current_model]
return gr.update(label=(f"{current_model}"))
# Function to list saved prompts and images
def list_saved_prompts_and_images():
saved_prompts = os.listdir('saved_prompts')
saved_images = os.listdir('saved_images')
html_str = "<h2>Saved Prompts and Images:</h2><ul>"
for prompt_file in saved_prompts:
image_file = f"{prompt_file[:-4]}.png"
if image_file in saved_images:
html_str += f'<li>Prompt: {prompt_file[:-4]} | <a href="saved_images/{image_file}" download>Download Image</a></li>'
html_str += "</ul>"
return html_str
# Function to handle image generation and saving
def send_it1(inputs, model_choice):
proc1 = models2[model_choice]
output1 = proc1(inputs)
safe_filename = generate_safe_filename(inputs[0])
image_path = f"saved_images/{safe_filename}.png"
prompt_path = f"saved_prompts/{safe_filename}.txt"
with open(prompt_path, 'w') as f:
f.write(inputs[0])
# Saving the image based on its type
if isinstance(output1, np.ndarray): # If it's a numpy array
Image.fromarray(np.uint8(output1)).save(image_path)
elif isinstance(output1, Image.Image): # If it's already a PIL Image
output1.save(image_path)
else:
print(f"Warning: Unexpected type {type(output1)} for output1.")
return output1
# Gradio interface layout and logic
with gr.Blocks() as myface:
gr.HTML("""<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="twitter:card" content="player"/>
<meta name="twitter:site" content=""/>
<meta name="twitter:player" content="https://omnibus-maximum-multiplier-places.hf.space"/>
<meta name="twitter:player:stream" content="https://omnibus-maximum-multiplier-places.hf.space"/>
<meta name="twitter:player:width" content="100%"/>
<meta name="twitter:player:height" content="600"/>
<meta property="og:title" content="Embedded Live Viewer"/>
<meta property="og:description" content="Tweet Genie - A Huggingface Space"/>
<meta property="og:image" content="https://cdn.glitch.global/80dbe92e-ce75-44af-84d5-74a2e21e9e55/omnicard.png?v=1676772531627"/>
<!--<meta http-equiv="refresh" content="0; url=https://huggingface.co/spaces/corbt/tweet-genie">-->
</head>
</html>
""")
with gr.Row():
with gr.Column(scale=100):
saved_output = gr.HTML(label="Saved Prompts and Images")
with gr.Row():
with gr.Tab("Title"):
gr.HTML("""<title>Prompt to Generate Image</title><div style="text-align: center; max-width: 1500px; margin: 0 auto;">
<h1>Enter a Prompt in Textbox then click Generate Image</h1>""")
with gr.Tab("Tools"):
with gr.Tab("View"):
with gr.Row():
with gr.Column(style="width=50%, height=70%"):
gr.Pil(label="Crop")
with gr.Column(style="width=50%, height=70%"):
gr.Pil(label="Crop")
with gr.Tab("Draw"):
with gr.Column(style="width=50%, height=70%"):
gr.Pil(label="Crop")
with gr.Column(style="width=50%, height=70%"):
gr.Pil(label="Draw")
gr.ImagePaint(label="Draw")
with gr.Tab("Text"):
with gr.Row():
with gr.Column(scale=50):
gr.Textbox(label="", lines=8, interactive=True)
with gr.Column(scale=50):
gr.Textbox(label="", lines=8, interactive=True)
with gr.Tab("Color Picker"):
with gr.Row():
with gr.Column(scale=50):
gr.ColorPicker(label="Color", interactive=True)
with gr.Column(scale=50):
gr.ImagePaint(label="Draw", interactive=True)
with gr.Row():
with gr.Column(scale=100):
magic1=gr.Textbox(lines=4)
run=gr.Button("Generate Image")
with gr.Row():
with gr.Column(scale=100):
model_name1 = gr.Dropdown(label="Select Model", choices=[m for m in models], type="index", value=current_model, interactive=True)
with gr.Row():
with gr.Column(style="width=800px"):
output1=gr.Image(label=(f"{current_model}"))
# Check the type before attempting to save the image
if isinstance(output1, Image.Image): # Check if it's a PIL Image object
output1.save(image_path)
elif isinstance(output1, np.ndarray): # Check if it's a NumPy array
Image.fromarray(np.array(output1, dtype=np.uint8)).save(image_path)
else:
print(f"Warning: Unexpected type {type(output1)} for output1.")
with gr.Row():
with gr.Column(scale=50):
input_text=gr.Textbox(label="Prompt Idea",lines=2)
use_short=gr.Button("Use Short Prompt")
see_prompts=gr.Button("Extend Idea")
with gr.Row():
with gr.Column(scale=100):
saved_output = gr.HTML(label=list_saved_prompts_and_images(), live=True)
def short_prompt(inputs):
return(inputs)
use_short.click(short_prompt,inputs=[input_text],outputs=magic1)
see_prompts.click(text_it1,inputs=[input_text],outputs=magic1)
# Reasoning: Link functions to Gradio components 🎛️
model_name1.change(set_model, inputs=model_name1, outputs=[output1])
run.click(send_it1, inputs=[magic1, model_name1], outputs=[output1])
# Launch the Gradio interface
myface.queue(concurrency_count=200)
myface.launch(inline=True, show_api=False, max_threads=400)