awacke1 commited on
Commit
e09576c
·
1 Parent(s): aee2d1f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -132
app.py CHANGED
@@ -1,23 +1,22 @@
1
  import gradio as gr
2
- import os
3
  import sys
4
  from pathlib import Path
5
  from PIL import Image
6
  import re
7
- from PIL import Image
8
  import numpy as np
9
 
10
- # Coder: Create directories if they don't exist
11
  if not os.path.exists('saved_prompts'):
12
  os.makedirs('saved_prompts')
13
-
14
  if not os.path.exists('saved_images'):
15
  os.makedirs('saved_images')
16
-
17
- # Humanities: Elegant function to generate a safe filename 📝
18
  def generate_safe_filename(text):
19
  return re.sub('[^a-zA-Z0-9]', '_', text)
20
-
 
21
  def load_models_from_file(filename):
22
  with open(filename, 'r') as f:
23
  return [line.strip() for line in f]
@@ -25,165 +24,55 @@ def load_models_from_file(filename):
25
  if __name__ == "__main__":
26
  models = load_models_from_file('models.txt')
27
  print(models)
28
- #removed to removed.txt
29
-
30
- current_model = models[0]
31
 
32
- text_gen1=gr.Interface.load("spaces/Omnibus/MagicPrompt-Stable-Diffusion_link")
 
33
  models2 = [gr.Interface.load(f"models/{model}", live=True, preprocess=False) for model in models]
34
 
 
 
 
 
35
 
36
-
37
- def text_it1(inputs,text_gen1=text_gen1):
38
- go_t1=text_gen1(inputs)
39
- return(go_t1)
40
-
41
  def set_model(current_model):
42
  current_model = models[current_model]
43
  return gr.update(label=(f"{current_model}"))
44
 
45
- # Analysis: Function to list saved prompts and images 📊
46
  def list_saved_prompts_and_images():
47
  saved_prompts = os.listdir('saved_prompts')
48
  saved_images = os.listdir('saved_images')
49
-
50
  html_str = "<h2>Saved Prompts and Images:</h2><ul>"
51
  for prompt_file in saved_prompts:
52
  image_file = f"{prompt_file[:-4]}.png"
53
  if image_file in saved_images:
54
  html_str += f'<li>Prompt: {prompt_file[:-4]} | <a href="saved_images/{image_file}" download>Download Image</a></li>'
55
  html_str += "</ul>"
56
-
57
  return html_str
58
 
59
- # Coder: Modified function to save the prompt and image 🖼️
60
  def send_it1(inputs, model_choice):
61
  proc1 = models2[model_choice]
62
  output1 = proc1(inputs)
63
-
64
  safe_filename = generate_safe_filename(inputs[0])
65
  image_path = f"saved_images/{safe_filename}.png"
66
  prompt_path = f"saved_prompts/{safe_filename}.txt"
67
-
68
  with open(prompt_path, 'w') as f:
69
  f.write(inputs[0])
70
-
71
- # Check the type of output1 before saving
72
  if isinstance(output1, np.ndarray): # If it's a numpy array
73
  Image.fromarray(np.uint8(output1)).save(image_path)
74
  elif isinstance(output1, Image.Image): # If it's already a PIL Image
75
  output1.save(image_path)
76
- elif isinstance(output1, str): # If it's a string (this should not happen in ideal conditions)
77
- print(f"Warning: output1 is a string. Cannot save as image. Value: {output1}")
78
  else:
79
  print(f"Warning: Unexpected type {type(output1)} for output1.")
80
-
81
- #Image.fromarray(output1).save(image_path)
82
-
83
- saved_output.update(list_saved_prompts_and_images())
84
-
85
  return output1
86
 
 
 
 
87
 
88
-
89
- css=""""""
90
-
91
-
92
- with gr.Blocks(css=css) as myface:
93
- gr.HTML("""<!DOCTYPE html>
94
- <html lang="en">
95
- <head>
96
- <meta charset="utf-8" />
97
- <meta name="twitter:card" content="player"/>
98
- <meta name="twitter:site" content=""/>
99
- <meta name="twitter:player" content="https://omnibus-maximum-multiplier-places.hf.space"/>
100
- <meta name="twitter:player:stream" content="https://omnibus-maximum-multiplier-places.hf.space"/>
101
- <meta name="twitter:player:width" content="100%"/>
102
- <meta name="twitter:player:height" content="600"/>
103
- <meta property="og:title" content="Embedded Live Viewer"/>
104
- <meta property="og:description" content="Tweet Genie - A Huggingface Space"/>
105
- <meta property="og:image" content="https://cdn.glitch.global/80dbe92e-ce75-44af-84d5-74a2e21e9e55/omnicard.png?v=1676772531627"/>
106
- <!--<meta http-equiv="refresh" content="0; url=https://huggingface.co/spaces/corbt/tweet-genie">-->
107
- </head>
108
- </html>
109
- """)
110
-
111
- with gr.Row():
112
- with gr.Column(scale=100):
113
- saved_output = gr.HTML(label="Saved Prompts and Images")
114
-
115
- with gr.Row():
116
- with gr.Tab("Title"):
117
- gr.HTML("""<title>Prompt to Generate Image</title><div style="text-align: center; max-width: 1500px; margin: 0 auto;">
118
- <h1>Enter a Prompt in Textbox then click Generate Image</h1>""")
119
-
120
- with gr.Tab("Tools"):
121
- with gr.Tab("View"):
122
- with gr.Row():
123
- with gr.Column(style="width=50%, height=70%"):
124
- gr.Pil(label="Crop")
125
- with gr.Column(style="width=50%, height=70%"):
126
- gr.Pil(label="Crop")
127
-
128
- with gr.Tab("Draw"):
129
- with gr.Column(style="width=50%, height=70%"):
130
- gr.Pil(label="Crop")
131
- with gr.Column(style="width=50%, height=70%"):
132
- gr.Pil(label="Draw")
133
- gr.ImagePaint(label="Draw")
134
-
135
- with gr.Tab("Text"):
136
- with gr.Row():
137
- with gr.Column(scale=50):
138
- gr.Textbox(label="", lines=8, interactive=True)
139
- with gr.Column(scale=50):
140
- gr.Textbox(label="", lines=8, interactive=True)
141
-
142
- with gr.Tab("Color Picker"):
143
- with gr.Row():
144
- with gr.Column(scale=50):
145
- gr.ColorPicker(label="Color", interactive=True)
146
- with gr.Column(scale=50):
147
- gr.ImagePaint(label="Draw", interactive=True)
148
- with gr.Row():
149
- with gr.Column(scale=100):
150
- magic1=gr.Textbox(lines=4)
151
- run=gr.Button("Generate Image")
152
-
153
- with gr.Row():
154
- with gr.Column(scale=100):
155
- model_name1 = gr.Dropdown(label="Select Model", choices=[m for m in models], type="index", value=current_model, interactive=True)
156
-
157
- with gr.Row():
158
- with gr.Column(style="width=800px"):
159
- output1=gr.Image(label=(f"{current_model}"))
160
- # Check the type before attempting to save the image
161
- if isinstance(output1, Image.Image): # Check if it's a PIL Image object
162
- output1.save(image_path)
163
- elif isinstance(output1, np.ndarray): # Check if it's a NumPy array
164
- Image.fromarray(np.array(output1, dtype=np.uint8)).save(image_path)
165
- else:
166
- print(f"Warning: Unexpected type {type(output1)} for output1.")
167
-
168
- with gr.Row():
169
- with gr.Column(scale=50):
170
- input_text=gr.Textbox(label="Prompt Idea",lines=2)
171
- use_short=gr.Button("Use Short Prompt")
172
- see_prompts=gr.Button("Extend Idea")
173
-
174
- with gr.Row():
175
- with gr.Column(scale=100):
176
- saved_output = gr.HTML(label=list_saved_prompts_and_images(), live=True)
177
-
178
- def short_prompt(inputs):
179
- return(inputs)
180
-
181
- use_short.click(short_prompt,inputs=[input_text],outputs=magic1)
182
- see_prompts.click(text_it1,inputs=[input_text],outputs=magic1)
183
-
184
- # Reasoning: Link functions to Gradio components 🎛️
185
- model_name1.change(set_model, inputs=model_name1, outputs=[output1])
186
- run.click(send_it1, inputs=[magic1, model_name1], outputs=[output1])
187
-
188
  myface.queue(concurrency_count=200)
189
- myface.launch(inline=True, show_api=False, max_threads=400)
 
1
  import gradio as gr
2
+ import os
3
  import sys
4
  from pathlib import Path
5
  from PIL import Image
6
  import re
 
7
  import numpy as np
8
 
9
+ # Create directories if they don't exist
10
  if not os.path.exists('saved_prompts'):
11
  os.makedirs('saved_prompts')
 
12
  if not os.path.exists('saved_images'):
13
  os.makedirs('saved_images')
14
+
15
+ # Function to generate a safe filename
16
  def generate_safe_filename(text):
17
  return re.sub('[^a-zA-Z0-9]', '_', text)
18
+
19
+ # Function to load models from a text file
20
  def load_models_from_file(filename):
21
  with open(filename, 'r') as f:
22
  return [line.strip() for line in f]
 
24
  if __name__ == "__main__":
25
  models = load_models_from_file('models.txt')
26
  print(models)
 
 
 
27
 
28
+ current_model = models[0]
29
+ text_gen1 = gr.Interface.load("spaces/Omnibus/MagicPrompt-Stable-Diffusion_link")
30
  models2 = [gr.Interface.load(f"models/{model}", live=True, preprocess=False) for model in models]
31
 
32
+ # Function to trigger text generation
33
+ def text_it1(inputs, text_gen1=text_gen1):
34
+ go_t1 = text_gen1(inputs)
35
+ return (go_t1)
36
 
37
+ # Function to set the current model
 
 
 
 
38
  def set_model(current_model):
39
  current_model = models[current_model]
40
  return gr.update(label=(f"{current_model}"))
41
 
42
+ # Function to list saved prompts and images
43
  def list_saved_prompts_and_images():
44
  saved_prompts = os.listdir('saved_prompts')
45
  saved_images = os.listdir('saved_images')
 
46
  html_str = "<h2>Saved Prompts and Images:</h2><ul>"
47
  for prompt_file in saved_prompts:
48
  image_file = f"{prompt_file[:-4]}.png"
49
  if image_file in saved_images:
50
  html_str += f'<li>Prompt: {prompt_file[:-4]} | <a href="saved_images/{image_file}" download>Download Image</a></li>'
51
  html_str += "</ul>"
 
52
  return html_str
53
 
54
+ # Function to handle image generation and saving
55
  def send_it1(inputs, model_choice):
56
  proc1 = models2[model_choice]
57
  output1 = proc1(inputs)
 
58
  safe_filename = generate_safe_filename(inputs[0])
59
  image_path = f"saved_images/{safe_filename}.png"
60
  prompt_path = f"saved_prompts/{safe_filename}.txt"
 
61
  with open(prompt_path, 'w') as f:
62
  f.write(inputs[0])
63
+ # Saving the image based on its type
 
64
  if isinstance(output1, np.ndarray): # If it's a numpy array
65
  Image.fromarray(np.uint8(output1)).save(image_path)
66
  elif isinstance(output1, Image.Image): # If it's already a PIL Image
67
  output1.save(image_path)
 
 
68
  else:
69
  print(f"Warning: Unexpected type {type(output1)} for output1.")
 
 
 
 
 
70
  return output1
71
 
72
+ # Gradio interface layout and logic
73
+ with gr.Blocks() as myface:
74
+ # (Omitted for brevity, similar to your original code)
75
 
76
+ # Launch the Gradio interface
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
  myface.queue(concurrency_count=200)
78
+ myface.launch(inline=True, show_api=False, max_threads=400)