Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.optim as optim
|
5 |
+
from keras.models import Sequential
|
6 |
+
from keras.layers import Dense
|
7 |
+
from keras.optimizers import Adam
|
8 |
+
|
9 |
+
# Set up Streamlit layout
|
10 |
+
st.title("PyTorch vs Keras Comparison")
|
11 |
+
|
12 |
+
# Define PyTorch model
|
13 |
+
class PyTorchModel(nn.Module):
|
14 |
+
def __init__(self, input_size, hidden_size, output_size):
|
15 |
+
super(PyTorchModel, self).__init__()
|
16 |
+
self.fc1 = nn.Linear(input_size, hidden_size)
|
17 |
+
self.fc2 = nn.Linear(hidden_size, output_size)
|
18 |
+
|
19 |
+
def forward(self, x):
|
20 |
+
x = torch.relu(self.fc1(x))
|
21 |
+
x = self.fc2(x)
|
22 |
+
return x
|
23 |
+
|
24 |
+
# Define Keras model
|
25 |
+
def KerasModel(input_size, hidden_size, output_size):
|
26 |
+
model = Sequential()
|
27 |
+
model.add(Dense(hidden_size, activation='relu', input_shape=(input_size,)))
|
28 |
+
model.add(Dense(output_size))
|
29 |
+
return model
|
30 |
+
|
31 |
+
# Define example NLP tasks
|
32 |
+
nlp_tasks = {
|
33 |
+
'Task 1: Sentiment Analysis': {
|
34 |
+
'PyTorch': {
|
35 |
+
'model': PyTorchModel(100, 64, 2),
|
36 |
+
'optimizer': optim.Adam,
|
37 |
+
},
|
38 |
+
'Keras': {
|
39 |
+
'model': KerasModel(100, 64, 2),
|
40 |
+
'optimizer': Adam,
|
41 |
+
}
|
42 |
+
},
|
43 |
+
'Task 2: Text Classification': {
|
44 |
+
'PyTorch': {
|
45 |
+
'model': PyTorchModel(200, 128, 5),
|
46 |
+
'optimizer': optim.SGD,
|
47 |
+
},
|
48 |
+
'Keras': {
|
49 |
+
'model': KerasModel(200, 128, 5),
|
50 |
+
'optimizer': Adam,
|
51 |
+
}
|
52 |
+
}
|
53 |
+
}
|
54 |
+
|
55 |
+
# Select NLP task
|
56 |
+
task = st.sidebar.selectbox("Select NLP Task", list(nlp_tasks.keys()))
|
57 |
+
|
58 |
+
# Select framework
|
59 |
+
framework = st.sidebar.selectbox("Select Framework", ['PyTorch', 'Keras'])
|
60 |
+
|
61 |
+
# Get model and optimizer for selected task and framework
|
62 |
+
model = nlp_tasks[task][framework]['model']
|
63 |
+
optimizer = nlp_tasks[task][framework]['optimizer']
|
64 |
+
|
65 |
+
# Display model summary
|
66 |
+
st.subheader(f"{framework} Model Summary")
|
67 |
+
st.text(model)
|
68 |
+
|
69 |
+
# Display optimizer details
|
70 |
+
st.subheader(f"{framework} Optimizer Details")
|
71 |
+
st.text(optimizer)
|
72 |
+
|
73 |
+
# Perform example computations
|
74 |
+
if st.button("Perform Computation"):
|
75 |
+
# Perform forward pass
|
76 |
+
input_data = torch.randn(1, model.fc1.in_features)
|
77 |
+
output = model(input_data)
|
78 |
+
st.write(f"Output: {output}")
|
79 |
+
|
80 |
+
# Perform backward pass
|
81 |
+
loss = output.mean()
|
82 |
+
optimizer = optimizer(model.parameters(), lr=0.01)
|
83 |
+
optimizer.zero_grad()
|
84 |
+
loss.backward()
|
85 |
+
optimizer.step()
|
86 |
+
st.write("Backward pass completed.")
|