File size: 4,848 Bytes
ae28c50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d17305b
 
ae28c50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import numpy as np

from qiskit import Aer, QuantumCircuit
from qiskit.circuit import Parameter
from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap
from qiskit.opflow import StateFn, PauliSumOp, AerPauliExpectation, ListOp, Gradient
from qiskit.utils import QuantumInstance, algorithm_globals

algorithm_globals.random_seed = 42

# set method to calculcate expected values
expval = AerPauliExpectation()

# define gradient method
gradient = Gradient()

# define quantum instances (statevector and sample based)
qi_sv = QuantumInstance(Aer.get_backend("aer_simulator_statevector"))

# we set shots to 10 as this will determine the number of samples later on.
qi_qasm = QuantumInstance(Aer.get_backend("aer_simulator"), shots=10)

from qiskit_machine_learning.neural_networks import OpflowQNN
# construct parametrized circuit
params1 = [Parameter("input1"), Parameter("weight1")]
qc1 = QuantumCircuit(1)
qc1.h(0)
qc1.ry(params1[0], 0)
qc1.rx(params1[1], 0)
qc_sfn1 = StateFn(qc1)

# construct cost operator
H1 = StateFn(PauliSumOp.from_list([("Z", 1.0), ("X", 1.0)]))

# combine operator and circuit to objective function
op1 = ~H1 @ qc_sfn1
print(op1)

# construct OpflowQNN with the operator, the input parameters, the weight parameters,
# the expected value, gradient, and quantum instance.
qnn1 = OpflowQNN(op1, [params1[0]], [params1[1]], expval, gradient, qi_sv)
# define (random) input and weights
input1 = algorithm_globals.random.random(qnn1.num_inputs)
weights1 = algorithm_globals.random.random(qnn1.num_weights)
# QNN forward pass
qnn1.forward(input1, weights1)

# QNN batched forward pass
qnn1.forward([input1, input1], weights1)

# QNN backward pass
qnn1.backward(input1, weights1)

# QNN batched backward pass
qnn1.backward([input1, input1], weights1)

op2 = ListOp([op1, op1])
qnn2 = OpflowQNN(op2, [params1[0]], [params1[1]], expval, gradient, qi_sv)
# QNN forward pass
qnn2.forward(input1, weights1)

# QNN backward pass
qnn2.backward(input1, weights1)

from qiskit_machine_learning.neural_networks import TwoLayerQNN
# specify the number of qubits
num_qubits = 3
# specify the feature map
fm = ZZFeatureMap(num_qubits, reps=2)
fm.draw(output="mpl")

# specify the ansatz
ansatz = RealAmplitudes(num_qubits, reps=1)
ansatz.draw(output="mpl")

# specify the observable
observable = PauliSumOp.from_list([("Z" * num_qubits, 1)])
print(observable)

# define two layer QNN
qnn3 = TwoLayerQNN(
    num_qubits, feature_map=fm, ansatz=ansatz, observable=observable, quantum_instance=qi_sv
)
# define (random) input and weights
input3 = algorithm_globals.random.random(qnn3.num_inputs)
weights3 = algorithm_globals.random.random(qnn3.num_weights)
# QNN forward pass
qnn3.forward(input3, weights3)

# QNN backward pass
qnn3.backward(input3, weights3)

from qiskit_machine_learning.neural_networks import CircuitQNN
qc = RealAmplitudes(num_qubits, entanglement="linear", reps=1)
qc.draw(output="mpl")

# specify circuit QNN
qnn4 = CircuitQNN(qc, [], qc.parameters, sparse=True, quantum_instance=qi_qasm)
# define (random) input and weights
input4 = algorithm_globals.random.random(qnn4.num_inputs)
weights4 = algorithm_globals.random.random(qnn4.num_weights)
# QNN forward pass
qnn4.forward(input4, weights4).todense()  # returned as a sparse matrix

# QNN backward pass, returns a tuple of sparse matrices
qnn4.backward(input4, weights4)

# specify circuit QNN
parity = lambda x: "{:b}".format(x).count("1") % 2
output_shape = 2  # this is required in case of a callable with dense output
qnn6 = CircuitQNN(
    qc,
    [],
    qc.parameters,
    sparse=False,
    interpret=parity,
    output_shape=output_shape,
    quantum_instance=qi_qasm,
)
# define (random) input and weights
input6 = algorithm_globals.random.random(qnn6.num_inputs)
weights6 = algorithm_globals.random.random(qnn6.num_weights)
# QNN forward pass
qnn6.forward(input6, weights6)


# QNN backward pass
qnn6.backward(input6, weights6)

# specify circuit QNN
qnn7 = CircuitQNN(qc, [], qc.parameters, sampling=True, quantum_instance=qi_qasm)
# define (random) input and weights
input7 = algorithm_globals.random.random(qnn7.num_inputs)
weights7 = algorithm_globals.random.random(qnn7.num_weights)
# QNN forward pass, results in samples of measured bit strings mapped to integers
qnn7.forward(input7, weights7)

# QNN backward pass
qnn7.backward(input7, weights7)

# specify circuit QNN
qnn8 = CircuitQNN(qc, [], qc.parameters, sampling=True, interpret=parity, quantum_instance=qi_qasm)
# define (random) input and weights
input8 = algorithm_globals.random.random(qnn8.num_inputs)
weights8 = algorithm_globals.random.random(qnn8.num_weights)
# QNN forward pass, results in samples of measured bit strings
qnn8.forward(input8, weights8)

# QNN backward pass
qnn8.backward(input8, weights8)

import qiskit.tools.jupyter

#%qiskit_version_table
#%qiskit_copyright