Spaces:
Paused
Paused
| import gradio as gr | |
| from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderTiny | |
| import torch | |
| import os | |
| import datetime | |
| import time | |
| from PIL import Image | |
| import re | |
| import base64 | |
| from io import BytesIO | |
| import pytz | |
| try: | |
| import intel_extension_for_pytorch as ipex | |
| except: | |
| pass | |
| from PIL import Image | |
| import numpy as np | |
| import gradio as gr | |
| import psutil | |
| import time | |
| SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None) | |
| TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None) | |
| HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
| # check if MPS is available OSX only M1/M2/M3 chips | |
| mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available() | |
| xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available() | |
| device = torch.device( | |
| "cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu" | |
| ) | |
| torch_device = device | |
| torch_dtype = torch.float16 | |
| print(f"SAFETY_CHECKER: {SAFETY_CHECKER}") | |
| print(f"TORCH_COMPILE: {TORCH_COMPILE}") | |
| print(f"device: {device}") | |
| if mps_available: | |
| device = torch.device("mps") | |
| torch_device = "cpu" | |
| torch_dtype = torch.float32 | |
| if SAFETY_CHECKER == "True": | |
| pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7") | |
| else: | |
| pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7", safety_checker=None) | |
| pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
| pipe.to(device=torch_device, dtype=torch_dtype).to(device) | |
| pipe.unet.to(memory_format=torch.channels_last) | |
| pipe.set_progress_bar_config(disable=True) | |
| # check if computer has less than 64GB of RAM using sys or os | |
| if psutil.virtual_memory().total < 64 * 1024**3: | |
| pipe.enable_attention_slicing() | |
| if TORCH_COMPILE: | |
| pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
| pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True) | |
| pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0) | |
| # Load LCM LoRA | |
| pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5") | |
| pipe.fuse_lora() | |
| def safe_filename(text): | |
| """Generate a safe filename from a string.""" | |
| safe_text = re.sub(r'\W+', '_', text) | |
| timestamp = datetime.datetime.now().strftime("%Y%m%d") | |
| return f"{safe_text}_{timestamp}.png" | |
| def encode_image(image): | |
| """Encode image to base64.""" | |
| buffered = BytesIO() | |
| #image.save(buffered, format="PNG") | |
| return base64.b64encode(buffered.getvalue()).decode() | |
| def fake_gan(): | |
| base_dir = os.getcwd() # Get the current base directory | |
| img_files = [file for file in os.listdir(base_dir) if file.lower().endswith((".png", ".jpg", ".jpeg"))] # List all files ending with ".jpg" or ".jpeg" | |
| images = [(random.choice(img_files), os.path.splitext(file)[0]) for file in img_files] | |
| return images | |
| def predict(prompt, guidance, steps, seed=1231231): | |
| generator = torch.manual_seed(seed) | |
| last_time = time.time() | |
| results = pipe( | |
| prompt=prompt, | |
| generator=generator, | |
| num_inference_steps=steps, | |
| guidance_scale=guidance, | |
| width=512, | |
| height=512, | |
| # original_inference_steps=params.lcm_steps, | |
| output_type="pil", | |
| ) | |
| print(f"Pipe took {time.time() - last_time} seconds") | |
| nsfw_content_detected = ( | |
| results.nsfw_content_detected[0] | |
| if "nsfw_content_detected" in results | |
| else False | |
| ) | |
| if nsfw_content_detected: | |
| nsfw=gr.Button("🕹️NSFW🎨", scale=1) | |
| # Generate file name | |
| #date_str = datetime.datetime.now().strftime("%Y%m%d") | |
| #safe_prompt = prompt.replace(" ", "_")[:50] # Truncate long prompts | |
| #filename = f"{date_str}_{safe_prompt}.png" | |
| central = pytz.timezone('US/Central') | |
| safe_date_time = datetime.datetime.now().strftime("%Y%m%d") | |
| replaced_prompt = prompt.replace(" ", "_").replace("\n", "_") | |
| safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90] | |
| filename = f"{safe_date_time}_{safe_prompt}.png" | |
| # Save the image | |
| if len(results.images) > 0: | |
| image_path = os.path.join("", filename) # Specify your directory | |
| results.images[0].save(image_path) | |
| print(f"#Image saved as {image_path}") | |
| #filename = safe_filename(prompt) | |
| #image.save(filename) | |
| encoded_image = encode_image(image) | |
| html_link = f'<a href="data:image/png;base64,{encoded_image}" download="{filename}">Download Image</a>' | |
| gr.Markdown(html_link) | |
| return results.images[0] if len(results.images) > 0 else None | |
| css = """ | |
| #container{ | |
| margin: 0 auto; | |
| max-width: 40rem; | |
| } | |
| #intro{ | |
| max-width: 100%; | |
| text-align: center; | |
| margin: 0 auto; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="container"): | |
| gr.Markdown( | |
| """## 🕹️ Stable Diffusion 1.5 - Real Time 🎨 Image Generation Using 🌐 Latent Consistency LoRAs""", | |
| elem_id="intro", | |
| ) | |
| with gr.Row(): | |
| with gr.Row(): | |
| prompt = gr.Textbox( | |
| placeholder="Insert your prompt here:", scale=5, container=False | |
| ) | |
| generate_bt = gr.Button("Generate", scale=1) | |
| # Image Result from last prompt | |
| image = gr.Image(type="filepath") | |
| # Gallery | |
| with gr.Row(variant="compact"): | |
| text = gr.Textbox( | |
| label="Image Sets", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| ) | |
| btn = gr.Button("Generate image") | |
| gallery = gr.Gallery( | |
| label="Generated images", show_label=False, elem_id="gallery" | |
| ) | |
| with gr.Accordion("Advanced options", open=False): | |
| guidance = gr.Slider( | |
| label="Guidance", minimum=0.0, maximum=5, value=0.3, step=0.001 | |
| ) | |
| steps = gr.Slider(label="Steps", value=4, minimum=2, maximum=10, step=1) | |
| seed = gr.Slider( | |
| randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1 | |
| ) | |
| with gr.Accordion("Run with diffusers"): | |
| gr.Markdown( | |
| """## Running LCM-LoRAs it with `diffusers` | |
| ```bash | |
| pip install diffusers==0.23.0 | |
| ``` | |
| ```py | |
| from diffusers import DiffusionPipeline, LCMScheduler | |
| pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7").to("cuda") | |
| pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
| pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5") #yes, it's a normal LoRA | |
| results = pipe( | |
| prompt="ImageEditor", | |
| num_inference_steps=4, | |
| guidance_scale=0.0, | |
| ) | |
| results.images[0] | |
| ``` | |
| """ | |
| ) | |
| inputs = [prompt, guidance, steps, seed] | |
| generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
| btn.click(fake_gan, None, gallery) | |
| prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
| guidance.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
| steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
| seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
| demo.queue() | |
| demo.launch() | |