Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile | |
| import plotly.graph_objects as go | |
| import streamlit.components.v1 as components | |
| from datetime import datetime | |
| from audio_recorder_streamlit import audio_recorder | |
| from bs4 import BeautifulSoup | |
| from collections import defaultdict, deque | |
| from dotenv import load_dotenv | |
| from gradio_client import Client | |
| from huggingface_hub import InferenceClient | |
| from io import BytesIO | |
| from PIL import Image | |
| from PyPDF2 import PdfReader | |
| from urllib.parse import quote | |
| from xml.etree import ElementTree as ET | |
| from openai import OpenAI | |
| import extra_streamlit_components as stx | |
| from streamlit.runtime.scriptrunner import get_script_run_ctx | |
| import asyncio | |
| import edge_tts | |
| # π§ Config & Setup | |
| st.set_page_config( | |
| page_title="π²BikeAIπ Claude/GPT Research", | |
| page_icon="π²π", | |
| layout="wide", | |
| initial_sidebar_state="auto", | |
| menu_items={ | |
| 'Get Help': 'https://huggingface.co/awacke1', | |
| 'Report a bug': 'https://huggingface.co/spaces/awacke1', | |
| 'About': "π²BikeAIπ Claude/GPT Research AI" | |
| } | |
| ) | |
| load_dotenv() | |
| openai_api_key = os.getenv('OPENAI_API_KEY', "") | |
| anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "") | |
| if 'OPENAI_API_KEY' in st.secrets: | |
| openai_api_key = st.secrets['OPENAI_API_KEY'] | |
| if 'ANTHROPIC_API_KEY' in st.secrets: | |
| anthropic_key = st.secrets["ANTHROPIC_API_KEY"] | |
| openai.api_key = openai_api_key | |
| claude_client = anthropic.Anthropic(api_key=anthropic_key) | |
| openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID')) | |
| HF_KEY = os.getenv('HF_KEY') | |
| API_URL = os.getenv('API_URL') | |
| if 'transcript_history' not in st.session_state: | |
| st.session_state['transcript_history'] = [] | |
| if 'chat_history' not in st.session_state: | |
| st.session_state['chat_history'] = [] | |
| if 'openai_model' not in st.session_state: | |
| st.session_state['openai_model'] = "gpt-4o-2024-05-13" | |
| if 'messages' not in st.session_state: | |
| st.session_state['messages'] = [] | |
| if 'last_voice_input' not in st.session_state: | |
| st.session_state['last_voice_input'] = "" | |
| if 'editing_file' not in st.session_state: | |
| st.session_state['editing_file'] = None | |
| if 'edit_new_name' not in st.session_state: | |
| st.session_state['edit_new_name'] = "" | |
| if 'edit_new_content' not in st.session_state: | |
| st.session_state['edit_new_content'] = "" | |
| if 'viewing_prefix' not in st.session_state: | |
| st.session_state['viewing_prefix'] = None | |
| if 'should_rerun' not in st.session_state: | |
| st.session_state['should_rerun'] = False | |
| # π¨ Minimal Custom CSS | |
| st.markdown(""" | |
| <style> | |
| .main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; } | |
| .stMarkdown { font-family: 'Helvetica Neue', sans-serif; } | |
| .stButton>button { | |
| margin-right: 0.5rem; | |
| } | |
| </style> | |
| """, unsafe_allow_html=True) | |
| FILE_EMOJIS = { | |
| "md": "π", | |
| "mp3": "π΅", | |
| } | |
| def clean_for_speech(text: str) -> str: | |
| text = text.replace("\n", " ") | |
| text = text.replace("</s>", " ") | |
| text = text.replace("#", "") | |
| # Remove links like (https://...) | |
| text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text) | |
| text = re.sub(r"\s+", " ", text).strip() | |
| return text | |
| def generate_filename(content, file_type="md"): | |
| # Prefix: YYMM_HHmm_ -> total 10 chars including underscore | |
| # Actually: %y%m_%H%M gives 9 chars, add trailing underscore for total 10 chars. | |
| # Example: 23 09 _12 45 _ => '2309_1245_' | |
| prefix = datetime.now().strftime("%y%m_%H%M") + "_" | |
| # Extract some words from content | |
| words = re.findall(r"\w+", content) | |
| # Take first 3 words for filename segment | |
| name_text = '_'.join(words[:3]) if words else 'file' | |
| filename = f"{prefix}{name_text}.{file_type}" | |
| return filename | |
| def create_file(prompt, response, file_type="md"): | |
| # Decide which content to base the filename on (prefer response) | |
| base_content = response.strip() if response.strip() else prompt.strip() | |
| filename = generate_filename(base_content, file_type) | |
| with open(filename, 'w', encoding='utf-8') as f: | |
| f.write(prompt + "\n\n" + response) | |
| return filename | |
| def get_download_link(file): | |
| with open(file, "rb") as f: | |
| b64 = base64.b64encode(f.read()).decode() | |
| return f'<a href="data:file/zip;base64,{b64}" download="{os.path.basename(file)}">π Download {os.path.basename(file)}</a>' | |
| def speech_synthesis_html(result): | |
| html_code = f""" | |
| <html><body> | |
| <script> | |
| var msg = new SpeechSynthesisUtterance("{result.replace('"', '')}"); | |
| window.speechSynthesis.speak(msg); | |
| </script> | |
| </body></html> | |
| """ | |
| components.html(html_code, height=0) | |
| async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0): | |
| text = clean_for_speech(text) | |
| if not text.strip(): | |
| return None | |
| rate_str = f"{rate:+d}%" | |
| pitch_str = f"{pitch:+d}Hz" | |
| communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str) | |
| out_fn = generate_filename(text,"mp3") | |
| await communicate.save(out_fn) | |
| return out_fn | |
| def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0): | |
| return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch)) | |
| def play_and_download_audio(file_path): | |
| if file_path and os.path.exists(file_path): | |
| st.audio(file_path) | |
| dl_link = f'<a href="data:audio/mpeg;base64,{base64.b64encode(open(file_path,"rb").read()).decode()}" download="{os.path.basename(file_path)}">Download {os.path.basename(file_path)}</a>' | |
| st.markdown(dl_link, unsafe_allow_html=True) | |
| def process_image(image_path, user_prompt): | |
| with open(image_path, "rb") as imgf: | |
| image_data = imgf.read() | |
| b64img = base64.b64encode(image_data).decode("utf-8") | |
| resp = openai_client.chat.completions.create( | |
| model=st.session_state["openai_model"], | |
| messages=[ | |
| {"role": "system", "content": "You are a helpful assistant."}, | |
| {"role": "user", "content": [ | |
| {"type": "text", "text": user_prompt}, | |
| {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64img}"}} | |
| ]} | |
| ], | |
| temperature=0.0, | |
| ) | |
| return resp.choices[0].message.content | |
| def process_audio(audio_path): | |
| with open(audio_path, "rb") as f: | |
| transcription = openai_client.audio.transcriptions.create(model="whisper-1", file=f) | |
| st.session_state.messages.append({"role": "user", "content": transcription.text}) | |
| return transcription.text | |
| def process_video(video_path, seconds_per_frame=1): | |
| vid = cv2.VideoCapture(video_path) | |
| total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| fps = vid.get(cv2.CAP_PROP_FPS) | |
| skip = int(fps*seconds_per_frame) | |
| frames_b64 = [] | |
| for i in range(0, total, skip): | |
| vid.set(cv2.CAP_PROP_POS_FRAMES, i) | |
| ret, frame = vid.read() | |
| if not ret: break | |
| _, buf = cv2.imencode(".jpg", frame) | |
| frames_b64.append(base64.b64encode(buf).decode("utf-8")) | |
| vid.release() | |
| return frames_b64 | |
| def process_video_with_gpt(video_path, prompt): | |
| frames = process_video(video_path) | |
| resp = openai_client.chat.completions.create( | |
| model=st.session_state["openai_model"], | |
| messages=[ | |
| {"role":"system","content":"Analyze video frames."}, | |
| {"role":"user","content":[ | |
| {"type":"text","text":prompt}, | |
| *[{"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{fr}"}} for fr in frames] | |
| ]} | |
| ] | |
| ) | |
| return resp.choices[0].message.content | |
| def search_arxiv(query): | |
| st.write("π Searching ArXiv...") | |
| client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") | |
| r1 = client.predict(prompt=query, llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1", stream_outputs=True, api_name="/ask_llm") | |
| st.markdown("### Mistral-8x7B-Instruct-v0.1 Result") | |
| st.markdown(r1) | |
| r2 = client.predict(prompt=query, llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2", stream_outputs=True, api_name="/ask_llm") | |
| st.markdown("### Mistral-7B-Instruct-v0.2 Result") | |
| st.markdown(r2) | |
| return f"{r1}\n\n{r2}" | |
| def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True): | |
| start = time.time() | |
| client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") | |
| r = client.predict(q,20,"Semantic Search","mistralai/Mixtral-8x7B-Instruct-v0.1",api_name="/update_with_rag_md") | |
| refs = r[0] | |
| r2 = client.predict(q,"mistralai/Mixtral-8x7B-Instruct-v0.1",True,api_name="/ask_llm") | |
| result = f"### π {q}\n\n{r2}\n\n{refs}" | |
| st.markdown(result) | |
| # Clean for speech before TTS | |
| if vocal_summary: | |
| main_text = clean_for_speech(r2) | |
| audio_file_main = speak_with_edge_tts(main_text) | |
| st.write("### ποΈ Vocal Summary (Short Answer)") | |
| play_and_download_audio(audio_file_main) | |
| if extended_refs: | |
| summaries_text = "Here are the summaries from the references: " + refs.replace('"','') | |
| summaries_text = clean_for_speech(summaries_text) | |
| audio_file_refs = speak_with_edge_tts(summaries_text) | |
| st.write("### π Extended References & Summaries") | |
| play_and_download_audio(audio_file_refs) | |
| if titles_summary: | |
| titles = [] | |
| for line in refs.split('\n'): | |
| m = re.search(r"\[([^\]]+)\]", line) | |
| if m: | |
| titles.append(m.group(1)) | |
| if titles: | |
| titles_text = "Here are the titles of the papers: " + ", ".join(titles) | |
| titles_text = clean_for_speech(titles_text) | |
| audio_file_titles = speak_with_edge_tts(titles_text) | |
| st.write("### π Paper Titles") | |
| play_and_download_audio(audio_file_titles) | |
| elapsed = time.time()-start | |
| st.write(f"**Total Elapsed:** {elapsed:.2f} s") | |
| # Create MD file from q and result | |
| create_file(q, result, "md") | |
| return result | |
| def process_with_gpt(text): | |
| if not text: return | |
| st.session_state.messages.append({"role":"user","content":text}) | |
| with st.chat_message("user"): | |
| st.markdown(text) | |
| with st.chat_message("assistant"): | |
| c = openai_client.chat.completions.create( | |
| model=st.session_state["openai_model"], | |
| messages=st.session_state.messages, | |
| stream=False | |
| ) | |
| ans = c.choices[0].message.content | |
| st.write("GPT-4o: " + ans) | |
| create_file(text, ans, "md") | |
| st.session_state.messages.append({"role":"assistant","content":ans}) | |
| return ans | |
| def process_with_claude(text): | |
| if not text: return | |
| with st.chat_message("user"): | |
| st.markdown(text) | |
| with st.chat_message("assistant"): | |
| r = claude_client.messages.create( | |
| model="claude-3-sonnet-20240229", | |
| max_tokens=1000, | |
| messages=[{"role":"user","content":text}] | |
| ) | |
| ans = r.content[0].text | |
| st.write("Claude: " + ans) | |
| create_file(text, ans, "md") | |
| st.session_state.chat_history.append({"user":text,"claude":ans}) | |
| return ans | |
| def create_zip_of_files(md_files, mp3_files): | |
| # Exclude README.md | |
| md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] | |
| all_files = md_files + mp3_files | |
| if not all_files: | |
| return None | |
| # Build a descriptive name | |
| stems = [os.path.splitext(os.path.basename(f))[0] for f in all_files] | |
| joined = "_".join(stems) | |
| if len(joined) > 50: | |
| joined = joined[:50] + "_etc" | |
| zip_name = f"{joined}.zip" | |
| with zipfile.ZipFile(zip_name,'w') as z: | |
| for f in all_files: | |
| z.write(f) | |
| return zip_name | |
| def load_files_for_sidebar(): | |
| # Gather files | |
| md_files = glob.glob("*.md") | |
| mp3_files = glob.glob("*.mp3") | |
| # Exclude README.md | |
| md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] | |
| all_files = md_files + mp3_files | |
| # Group by first 10 chars of filename | |
| groups = defaultdict(list) | |
| for f in all_files: | |
| fname = os.path.basename(f) | |
| prefix = fname[:10] # first 10 chars as group prefix | |
| groups[prefix].append(f) | |
| # Sort files in each group by mod time descending | |
| for prefix in groups: | |
| groups[prefix].sort(key=lambda x: os.path.getmtime(x), reverse=True) | |
| # Sort prefixes by newest file time | |
| sorted_prefixes = sorted(groups.keys(), key=lambda pre: max(os.path.getmtime(x) for x in groups[pre]), reverse=True) | |
| return groups, sorted_prefixes | |
| def extract_keywords_from_md(files): | |
| # Combine all MD content | |
| text = "" | |
| for f in files: | |
| if f.endswith(".md"): | |
| c = open(f,'r',encoding='utf-8').read() | |
| text += " " + c | |
| # Extract first 5 unique words | |
| words = re.findall(r"\w+", text.lower()) | |
| unique_words = [] | |
| for w in words: | |
| if w not in unique_words: | |
| unique_words.append(w) | |
| if len(unique_words) == 5: | |
| break | |
| return unique_words | |
| def display_file_manager_sidebar(groups, sorted_prefixes): | |
| st.sidebar.title("π΅ Audio & Document Manager") | |
| # Collect all md and mp3 files for zip operations | |
| all_md = [] | |
| all_mp3 = [] | |
| for prefix in groups: | |
| for f in groups[prefix]: | |
| if f.endswith(".md"): | |
| all_md.append(f) | |
| elif f.endswith(".mp3"): | |
| all_mp3.append(f) | |
| top_bar = st.sidebar.columns(3) | |
| with top_bar[0]: | |
| if st.button("π Del All MD"): | |
| for f in all_md: | |
| os.remove(f) | |
| st.session_state.should_rerun = True | |
| with top_bar[1]: | |
| if st.button("π Del All MP3"): | |
| for f in all_mp3: | |
| os.remove(f) | |
| st.session_state.should_rerun = True | |
| with top_bar[2]: | |
| if st.button("β¬οΈ Zip All"): | |
| z = create_zip_of_files(all_md, all_mp3) | |
| if z: | |
| st.sidebar.markdown(get_download_link(z),unsafe_allow_html=True) | |
| for prefix in sorted_prefixes: | |
| files = groups[prefix] | |
| # Extract 5-word keywords from MD in this group | |
| kw = extract_keywords_from_md(files) | |
| keywords_str = " ".join(kw) if kw else "No Keywords" | |
| with st.sidebar.expander(f"{prefix} Files ({len(files)}) - Keywords: {keywords_str}", expanded=True): | |
| # Delete group / View group | |
| c1,c2 = st.columns(2) | |
| with c1: | |
| if st.button("πView Group", key="view_group_"+prefix): | |
| st.session_state.viewing_prefix = prefix | |
| # No rerun needed, just state update | |
| with c2: | |
| if st.button("πDel Group", key="del_group_"+prefix): | |
| for f in files: | |
| os.remove(f) | |
| st.session_state.should_rerun = True | |
| for f in files: | |
| fname = os.path.basename(f) | |
| ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S") | |
| ext = os.path.splitext(fname)[1].lower().strip('.') | |
| st.write(f"**{fname}** - {ctime}") | |
| # Individual file actions are less necessary if we have group actions | |
| # But we can still provide them if desired. | |
| # The user requested grouping primarily, but we can keep minimal file actions if needed. | |
| # In instructions now, main focus is group view/delete. | |
| # We'll omit individual file view/edit here since we have group view. | |
| # If needed, re-add them similarly as before. | |
| # For now, rely on "View Group" to see all files. | |
| def main(): | |
| st.sidebar.markdown("### π²BikeAIπ Multi-Agent Research AI") | |
| tab_main = st.radio("Action:",["π€ Voice Input","πΈ Media Gallery","π Search ArXiv","π File Editor"],horizontal=True) | |
| model_choice = st.sidebar.radio("AI Model:", ["Arxiv","GPT-4o","Claude-3","GPT+Claude+Arxiv"], index=0) | |
| mycomponent = components.declare_component("mycomponent", path="mycomponent") | |
| val = mycomponent(my_input_value="Hello") | |
| if val: | |
| user_input = val.strip() | |
| if user_input: | |
| if model_choice == "GPT-4o": | |
| process_with_gpt(user_input) | |
| elif model_choice == "Claude-3": | |
| process_with_claude(user_input) | |
| elif model_choice == "Arxiv": | |
| st.subheader("Arxiv Only Results:") | |
| perform_ai_lookup(user_input, vocal_summary=True, extended_refs=False, titles_summary=True) | |
| else: | |
| col1,col2,col3=st.columns(3) | |
| with col1: | |
| st.subheader("GPT-4o Omni:") | |
| try: | |
| process_with_gpt(user_input) | |
| except: | |
| st.write('GPT 4o error') | |
| with col2: | |
| st.subheader("Claude-3 Sonnet:") | |
| try: | |
| process_with_claude(user_input) | |
| except: | |
| st.write('Claude error') | |
| with col3: | |
| st.subheader("Arxiv + Mistral:") | |
| try: | |
| perform_ai_lookup(user_input, vocal_summary=True, extended_refs=False, titles_summary=True) | |
| except: | |
| st.write("Arxiv error") | |
| if tab_main == "π Search ArXiv": | |
| st.subheader("π Search ArXiv") | |
| q=st.text_input("Research query:") | |
| st.markdown("### ποΈ Audio Generation Options") | |
| vocal_summary = st.checkbox("ποΈ Vocal Summary (Short Answer)", value=True) | |
| extended_refs = st.checkbox("π Extended References & Summaries (Long)", value=False) | |
| titles_summary = st.checkbox("π Paper Titles Only", value=True) | |
| if q and st.button("Run ArXiv Query"): | |
| perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs, titles_summary=titles_summary) | |
| elif tab_main == "π€ Voice Input": | |
| st.subheader("π€ Voice Recognition") | |
| user_text = st.text_area("Message:", height=100) | |
| user_text = user_text.strip() | |
| if st.button("Send π¨"): | |
| if user_text: | |
| if model_choice == "GPT-4o": | |
| process_with_gpt(user_text) | |
| elif model_choice == "Claude-3": | |
| process_with_claude(user_text) | |
| elif model_choice == "Arxiv": | |
| st.subheader("Arxiv Only Results:") | |
| perform_ai_lookup(user_text, vocal_summary=True, extended_refs=False, titles_summary=True) | |
| else: | |
| col1,col2,col3=st.columns(3) | |
| with col1: | |
| st.subheader("GPT-4o Omni:") | |
| process_with_gpt(user_text) | |
| with col2: | |
| st.subheader("Claude-3 Sonnet:") | |
| process_with_claude(user_text) | |
| with col3: | |
| st.subheader("Arxiv & Mistral:") | |
| res = perform_ai_lookup(user_text, vocal_summary=True, extended_refs=False, titles_summary=True) | |
| st.markdown(res) | |
| st.subheader("π Chat History") | |
| t1,t2=st.tabs(["Claude History","GPT-4o History"]) | |
| with t1: | |
| for c in st.session_state.chat_history: | |
| st.write("**You:**", c["user"]) | |
| st.write("**Claude:**", c["claude"]) | |
| with t2: | |
| for m in st.session_state.messages: | |
| with st.chat_message(m["role"]): | |
| st.markdown(m["content"]) | |
| elif tab_main == "πΈ Media Gallery": | |
| st.header("π¬ Media Gallery - Images and Videos") | |
| tabs = st.tabs(["πΌοΈ Images", "π₯ Video"]) | |
| with tabs[0]: | |
| imgs = glob.glob("*.png")+glob.glob("*.jpg") | |
| if imgs: | |
| c = st.slider("Cols",1,5,3) | |
| cols = st.columns(c) | |
| for i,f in enumerate(imgs): | |
| with cols[i%c]: | |
| st.image(Image.open(f),use_container_width=True) | |
| if st.button(f"π Analyze {os.path.basename(f)}", key=f"analyze_{f}"): | |
| a = process_image(f,"Describe this image.") | |
| st.markdown(a) | |
| else: | |
| st.write("No images found.") | |
| with tabs[1]: | |
| vids = glob.glob("*.mp4") | |
| if vids: | |
| for v in vids: | |
| with st.expander(f"π₯ {os.path.basename(v)}"): | |
| st.markdown(get_media_html(v,"video"),unsafe_allow_html=True) | |
| if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"): | |
| a = process_video_with_gpt(v,"Describe video.") | |
| st.markdown(a) | |
| else: | |
| st.write("No videos found.") | |
| elif tab_main == "π File Editor": | |
| if getattr(st.session_state,'current_file',None): | |
| st.subheader(f"Editing: {st.session_state.current_file}") | |
| new_text = st.text_area("Content:", st.session_state.file_content, height=300) | |
| if st.button("Save"): | |
| with open(st.session_state.current_file,'w',encoding='utf-8') as f: | |
| f.write(new_text) | |
| st.success("Updated!") | |
| st.session_state.should_rerun = True | |
| else: | |
| st.write("Select a file from the sidebar to edit.") | |
| # After main content, load and show file groups in sidebar | |
| groups, sorted_prefixes = load_files_for_sidebar() | |
| display_file_manager_sidebar(groups, sorted_prefixes) | |
| # If viewing a prefix group, show all files in main area | |
| if st.session_state.viewing_prefix and st.session_state.viewing_prefix in groups: | |
| st.write("---") | |
| st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}") | |
| # Show all files in this prefix group in order (mp3 and md) | |
| # Sort by mod time descending (already sorted) | |
| for f in groups[st.session_state.viewing_prefix]: | |
| fname = os.path.basename(f) | |
| ext = os.path.splitext(fname)[1].lower().strip('.') | |
| st.write(f"### {fname}") | |
| if ext == "md": | |
| content = open(f,'r',encoding='utf-8').read() | |
| st.markdown(content) | |
| elif ext == "mp3": | |
| st.audio(f) | |
| else: | |
| # just show a download link | |
| st.markdown(get_download_link(f), unsafe_allow_html=True) | |
| if st.button("Close Group View"): | |
| st.session_state.viewing_prefix = None | |
| if st.session_state.should_rerun: | |
| st.session_state.should_rerun = False | |
| st.rerun() | |
| if __name__=="__main__": | |
| main() | |