Spaces:
Runtime error
Runtime error
File size: 2,412 Bytes
c718335 0f20bc5 c718335 0f20bc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
import gradio as gr
import os
from PIL import Image
import torch
from torchvision import transforms
import torch
model = torch.hub.load('pytorch/vision:v0.10.0', 'wide_resnet50_2', pretrained=True)
model = torch.hub.load('pytorch/vision:v0.10.0', 'wide_resnet101_2', pretrained=True)
model.eval()
os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt")
torch.hub.download_url_to_file("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
def inference(input_image):
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
model.to('cuda')
with torch.no_grad():
output = model(input_batch)
probabilities = torch.nn.functional.softmax(output[0], dim=0)
with open("imagenet_classes.txt", "r") as f:
categories = [s.strip() for s in f.readlines()]
top5_prob, top5_catid = torch.topk(probabilities, 5)
result = {}
for i in range(top5_prob.size(0)):
result[categories[top5_catid[i]]] = top5_prob[i].item()
return result
inputs = gr.inputs.Image(type='pil')
outputs = gr.outputs.Label(type="confidences",num_top_classes=5)
title = "WRN - Wide Residual Networks"
description = "ResNet blocks based architecture where depth is decreased and width of residual networks is increased."
article = "<p style='text-align: center'><a href='https://paperswithcode.com/paper/wide-residual-networks'>Wide Residual Networks on Papers With Code</a></p>"
examples = [
['1.jpg'],
['2.jpg'],
['3.jpg'],
['4.jpg'],
['5.jpg'],
['20190210_171436.jpg'],
['20190211_215501.jpg'],
['20190220_220143.jpg'],
['20190223_181415.jpg'],
['20190404_193912.jpg'],
['20190413_021309.jpg'],
['20190413_115659.jpg']
]
gr.Interface(
inference,
inputs,
outputs,
title=title,
description=description,
article=article,
examples=examples,
analytics_enabled=True
).launch() |