import gradio as gr import os from PIL import Image import torch from torchvision import transforms import torch model = torch.hub.load('pytorch/vision:v0.10.0', 'wide_resnet50_2', pretrained=True) model = torch.hub.load('pytorch/vision:v0.10.0', 'wide_resnet101_2', pretrained=True) model.eval() os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt") torch.hub.download_url_to_file("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") def inference(input_image): preprocess = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) input_tensor = preprocess(input_image) input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model if torch.cuda.is_available(): input_batch = input_batch.to('cuda') model.to('cuda') with torch.no_grad(): output = model(input_batch) probabilities = torch.nn.functional.softmax(output[0], dim=0) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] top5_prob, top5_catid = torch.topk(probabilities, 5) result = {} for i in range(top5_prob.size(0)): result[categories[top5_catid[i]]] = top5_prob[i].item() return result inputs = gr.inputs.Image(type='pil') outputs = gr.outputs.Label(type="confidences",num_top_classes=5) title = "WRN - Wide Residual Networks" description = "ResNet blocks based architecture where depth is decreased and width of residual networks is increased." article = "

Wide Residual Networks on Papers With Code

" examples = [ ['1.jpg'], ['2.jpg'], ['3.jpg'], ['4.jpg'], ['5.jpg'], ['20190210_171436.jpg'], ['20190211_215501.jpg'], ['20190220_220143.jpg'], ['20190223_181415.jpg'], ['20190404_193912.jpg'], ['20190413_021309.jpg'], ['20190413_115659.jpg'] ] gr.Interface( inference, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=True ).launch()