File size: 6,689 Bytes
69777eb
4d8b8e1
297a56e
4d8b8e1
297a56e
4d8b8e1
297a56e
4d8b8e1
 
 
 
cdc8845
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69777eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from datasets import load_dataset
#LOINC
datasetLOINC = load_dataset("awacke1/LOINC-CodeSet-Value-Description.csv")
#SNOMED:
datasetSNOMED = load_dataset("awacke1/SNOMED-CT-Code-Value-Semantic-Set.csv")
#eCQM:
dataseteCQM = load_dataset("awacke1/eCQM-Code-Value-Semantic-Set.csv")
print(datasetLOINC)
print(datasetSNOMED)
print(dataseteCQM)

import os
import json
import numpy as np
import gradio as gr

CHOICES = ["foo", "bar", "baz"]
JSONOBJ = """{"items":{"item":[{"id": "0001","type": null,"is_good": false,"ppu": 0.55,"batters":{"batter":[{ "id": "1001", "type": "Regular" },{ "id": "1002", "type": "Chocolate" },{ "id": "1003", "type": "Blueberry" },{ "id": "1004", "type": "Devil's Food" }]},"topping":[{ "id": "5001", "type": "None" },{ "id": "5002", "type": "Glazed" },{ "id": "5005", "type": "Sugar" },{ "id": "5007", "type": "Powdered Sugar" },{ "id": "5006", "type": "Chocolate with Sprinkles" },{ "id": "5003", "type": "Chocolate" },{ "id": "5004", "type": "Maple" }]}]}}"""


def fn(
    text1,
    text2,
    num,
    slider1,
    slider2,
    single_checkbox,
    checkboxes,
    radio,
    dropdown,
    im1,
    im2,
    im3,
    im4,
    video,
    audio1,
    audio2,
    file,
    df1,
    df2,
):
    return (
        (text1 if single_checkbox else text2)
        + ", selected:"
        + ", ".join(checkboxes),  # Text
        {
            "positive": num / (num + slider1 + slider2),
            "negative": slider1 / (num + slider1 + slider2),
            "neutral": slider2 / (num + slider1 + slider2),
        },  # Label
        (audio1[0], np.flipud(audio1[1]))
        if audio1 is not None  else os.path.join(os.path.dirname(__file__), "files/cantina.wav"),  # Audio
        np.flipud(im1)
        if im1 is not None  else os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"),  # Image
        video
        if video is not None  else os.path.join(os.path.dirname(__file__), "files/world.mp4"),  # Video
        [
            ("The", "art"),
            ("quick brown", "adj"),
            ("fox", "nn"),
            ("jumped", "vrb"),
            ("testing testing testing", None),
            ("over", "prp"),
            ("the", "art"),
            ("testing", None),
            ("lazy", "adj"),
            ("dogs", "nn"),
            (".", "punc"),
        ]   + [(f"test {x}", f"test {x}") for x in range(10)],  # HighlightedText        
        [
            ("The testing testing testing", None),
            ("over", 0.6),
            ("the", 0.2),
            ("testing", None),
            ("lazy", -0.1),
            ("dogs", 0.4),
            (".", 0),
        ]   + [(f"test", x / 10) for x in range(-10, 10)],  # HighlightedText
        json.loads(JSONOBJ),  # JSON
        "<button style='background-color: red'>Click Me: " + radio + "</button>",  # HTML
        os.path.join(os.path.dirname(__file__), "files/titanic.csv"),
        df1,  # Dataframe
        np.random.randint(0, 10, (4, 4)),  # Dataframe
        df2,  # Timeseries
    )


demo = gr.Interface(
    fn,
    inputs=[
        gr.Textbox(value="Lorem ipsum", label="Textbox"),
        gr.Textbox(lines=3, placeholder="Type here..", label="Textbox 2"),
        gr.Number(label="Number", value=42),
        gr.Slider(10, 20, value=15, label="Slider: 10 - 20"),
        gr.Slider(maximum=20, step=0.04, label="Slider: step @ 0.04"),
        gr.Checkbox(label="Checkbox"),
        gr.CheckboxGroup(label="CheckboxGroup", choices=CHOICES, value=CHOICES[0:2]),
        gr.Radio(label="Radio", choices=CHOICES, value=CHOICES[2]),
        gr.Dropdown(label="Dropdown", choices=CHOICES),
        gr.Image(label="Image"),
        gr.Image(label="Image w/ Cropper", tool="select"),
        gr.Image(label="Sketchpad", source="canvas"),
        gr.Image(label="Webcam", source="webcam"),
        gr.Video(label="Video"),
        gr.Audio(label="Audio"),
        gr.Audio(label="Microphone", source="microphone"),
        gr.File(label="File"),
        gr.Dataframe(label="Dataframe", headers=["Name", "Age", "Gender"]),
        gr.Timeseries(x="time", y=["price", "value"], colors=["pink", "purple"]),
    ],
    outputs=[
        gr.Textbox(label="Textbox"),
        gr.Label(label="Label"),
        gr.Audio(label="Audio"),
        gr.Image(label="Image"),
        gr.Video(label="Video"),
        gr.HighlightedText(label="HighlightedText", color_map={"punc": "pink", "test 0": "blue"}),
        gr.HighlightedText(label="HighlightedText", show_legend=True),
        gr.JSON(label="JSON"),
        gr.HTML(label="HTML"),
        gr.File(label="File"),
        gr.Dataframe(label="Dataframe"),
        gr.Dataframe(label="Numpy"),
        gr.Timeseries(x="time", y=["price", "value"], label="Timeseries"),
    ],
    examples=[
        [
            "the quick brown fox",
            "jumps over the lazy dog",
            10,
            12,
            4,
            True,
            ["foo", "baz"],
            "baz",
            "bar",
            os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"),
            os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"),
            os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"),
            os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"),
            os.path.join(os.path.dirname(__file__), "files/world.mp4"),
            os.path.join(os.path.dirname(__file__), "files/cantina.wav"),
            os.path.join(os.path.dirname(__file__), "files/cantina.wav"),
            os.path.join(os.path.dirname(__file__), "files/titanic.csv"),
            [[1, 2, 3], [3, 4, 5]],
            os.path.join(os.path.dirname(__file__), "files/time.csv"),
        ]
    ]
    * 3,
    theme="default",
    title="Gradio AI UI UX",
    cache_examples=False,
    description="Try out all the components!",
    article="Learn more about [Gradio](http://gradio.app)",
)

if __name__ == "__main__":
    demo.launch()


#-or-
#git lfs install
#git clone https://huggingface.co/datasets/awacke1/SNOMED-CT-Code-Value-Semantic-Set.csv
# if you want to clone without large files – just their pointers
# prepend your git clone with the following env var:
#GIT_LFS_SKIP_SMUDGE=1

#---



#-or-
#git lfs install
#git clone https://huggingface.co/datasets/awacke1/eCQM-Code-Value-Semantic-Set.csv
# if you want to clone without large files – just their pointers
# prepend your git clone with the following env var:
#GIT_LFS_SKIP_SMUDGE=1

#---

#-or-

#git lfs install
#git clone https://huggingface.co/datasets/awacke1/LOINC-CodeSet-Value-Description.csv
# if you want to clone without large files – just their pointers
# prepend your git clone with the following env var:
#GIT_LFS_SKIP_SMUDGE=1