Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -37,21 +37,21 @@ JSONOBJ_MAP=datasetLOINC.filter(lambda example: example["Description"].startswit
|
|
37 |
def fn( text1, text2, single_checkbox, checkboxes, radio, im4, file, df1, df2,):
|
38 |
searchTerm = text1
|
39 |
searchTermSentence = text2
|
40 |
-
start_with_searchTermLOINC = datasetLOINC.filter(lambda example: example["Description"].startswith(
|
41 |
-
start_with_searchTermSNOMED = datasetSNOMED.filter(lambda example: example["Description"].startswith(
|
42 |
-
start_with_searchTermCQM = dataseteCQM.filter(lambda example: example["Description"].startswith(
|
43 |
-
len(start_with_ar)
|
44 |
|
45 |
return (
|
46 |
-
(text1 if single_checkbox else text2) + ", selected:" + ", ".join(checkboxes), # Text
|
|
|
47 |
# {"positive": num / (num + slider1 + slider2),"negative": slider1 / (num + slider1 + slider2),"neutral": slider2 / (num + slider1 + slider2),}, # Label
|
48 |
# (audio1[0], np.flipud(audio1[1])) if audio1 is not None else os.path.join(os.path.dirname(__file__), "files/cantina.wav"), # Audio
|
49 |
# np.flipud(im1) if im1 is not None else os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"), # Image
|
50 |
# video if video is not None else os.path.join(os.path.dirname(__file__), "files/world.mp4"), # Video
|
51 |
[
|
52 |
-
(searchTerm, start_with_searchTermLOINC),
|
53 |
-
(searchTerm, start_with_searchTermSNOMED ),
|
54 |
-
(searchTerm, start_with_searchTermCQM ),
|
55 |
("The", "art"),
|
56 |
("quick brown", "adj"),
|
57 |
("fox", "nn"),
|
@@ -65,9 +65,9 @@ def fn( text1, text2, single_checkbox, checkboxes, radio, im4,
|
|
65 |
(".", "punc"),
|
66 |
] + [(f"test {x}", f"test {x}") for x in range(10)], # HighlightedText
|
67 |
[
|
68 |
-
(start_with_searchTermLOINC, 0.8 ),
|
69 |
-
(start_with_searchTermSNOMED, 0.8 ),
|
70 |
-
(start_with_searchTermCQM, 0.8 ),
|
71 |
("The testing testing testing", None),
|
72 |
("over", 0.6),
|
73 |
("the", 0.2),
|
|
|
37 |
def fn( text1, text2, single_checkbox, checkboxes, radio, im4, file, df1, df2,):
|
38 |
searchTerm = text1
|
39 |
searchTermSentence = text2
|
40 |
+
start_with_searchTermLOINC = datasetLOINC.filter(lambda example: example["Description"].startswith('Allergy')) #Allergy
|
41 |
+
start_with_searchTermSNOMED = datasetSNOMED.filter(lambda example: example["Description"].startswith('Hospital')) #Hospital
|
42 |
+
start_with_searchTermCQM = dataseteCQM.filter(lambda example: example["Description"].startswith('Bathing')) #Bathing
|
|
|
43 |
|
44 |
return (
|
45 |
+
#(text1 if single_checkbox else text2) + ", selected:" + ", ".join(checkboxes), # Text
|
46 |
+
(start_with_searchTermLOINC[0] if single_checkbox else start_with_searchTermSNOMED[0]) + ", selected:" + ", ".join(checkboxes), # Text
|
47 |
# {"positive": num / (num + slider1 + slider2),"negative": slider1 / (num + slider1 + slider2),"neutral": slider2 / (num + slider1 + slider2),}, # Label
|
48 |
# (audio1[0], np.flipud(audio1[1])) if audio1 is not None else os.path.join(os.path.dirname(__file__), "files/cantina.wav"), # Audio
|
49 |
# np.flipud(im1) if im1 is not None else os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"), # Image
|
50 |
# video if video is not None else os.path.join(os.path.dirname(__file__), "files/world.mp4"), # Video
|
51 |
[
|
52 |
+
(searchTerm, start_with_searchTermLOINC[0]),
|
53 |
+
(searchTerm, start_with_searchTermSNOMED[0] ),
|
54 |
+
(searchTerm, start_with_searchTermCQM[0] ),
|
55 |
("The", "art"),
|
56 |
("quick brown", "adj"),
|
57 |
("fox", "nn"),
|
|
|
65 |
(".", "punc"),
|
66 |
] + [(f"test {x}", f"test {x}") for x in range(10)], # HighlightedText
|
67 |
[
|
68 |
+
(start_with_searchTermLOINC[0], 0.8 ),
|
69 |
+
(start_with_searchTermSNOMED[0], 0.8 ),
|
70 |
+
(start_with_searchTermCQM[0], 0.8 ),
|
71 |
("The testing testing testing", None),
|
72 |
("over", 0.6),
|
73 |
("the", 0.2),
|