File size: 34,028 Bytes
309d3fb a0abcd6 309d3fb 260707c 309d3fb 260707c 309d3fb 77b751e b350789 77b751e 309d3fb 77b751e 309d3fb b350789 77b751e 309d3fb 77b751e 309d3fb c9af8d7 b350789 77b751e c9af8d7 77b751e c9af8d7 b350789 77b751e c9af8d7 77b751e c9af8d7 a0abcd6 77b751e a0abcd6 77b751e a0abcd6 309d3fb 77b751e 309d3fb 77b751e 309d3fb 77b751e 309d3fb 5fa7729 309d3fb a0abcd6 309d3fb a0abcd6 309d3fb 77b751e 309d3fb a0abcd6 77b751e b350789 77b751e 309d3fb 77b751e a0abcd6 371d2e7 5fa7729 309d3fb a0abcd6 309d3fb 77b751e 309d3fb a0abcd6 309d3fb c9af8d7 309d3fb c9af8d7 77b751e c9af8d7 77b751e c9af8d7 77b751e c9af8d7 77b751e c9af8d7 77b751e c9af8d7 77b751e c9af8d7 77b751e c9af8d7 309d3fb a0abcd6 309d3fb 77b751e a0abcd6 309d3fb a0abcd6 309d3fb 77b751e 309d3fb a0abcd6 309d3fb 77b751e 309d3fb a0abcd6 77b751e 309d3fb a0abcd6 309d3fb 5fa7729 309d3fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 |
import streamlit as st
import asyncio
import websockets
import uuid
from datetime import datetime
import os
import random
import time
import hashlib
from PIL import Image
import glob
import base64
import io
import streamlit.components.v1 as components
import edge_tts
from audio_recorder_streamlit import audio_recorder
import nest_asyncio
import re
from streamlit_paste_button import paste_image_button
import pytz
import shutil
import anthropic
import openai
from PyPDF2 import PdfReader
import threading
import json
import zipfile
from gradio_client import Client
from dotenv import load_dotenv
from streamlit_marquee import streamlit_marquee
from collections import defaultdict, Counter
import pandas as pd
# ๐ ๏ธ Patch asyncio for nesting
nest_asyncio.apply()
# ๐จ Page Config
st.set_page_config(
page_title="๐ฒTalkingAIResearcher๐",
page_icon="๐ฒ๐",
layout="wide",
initial_sidebar_state="auto"
)
# ๐ Static Config
icons = '๐ค๐ง ๐ฌ๐'
Site_Name = '๐ค๐ง Chat & Quote Node๐๐ฌ'
START_ROOM = "Sector ๐"
FUN_USERNAMES = {
"CosmicJester ๐": "en-US-AriaNeural",
"PixelPanda ๐ผ": "en-US-JennyNeural",
"QuantumQuack ๐ฆ": "en-GB-SoniaNeural",
"StellarSquirrel ๐ฟ๏ธ": "en-AU-NatashaNeural",
"GizmoGuru โ๏ธ": "en-CA-ClaraNeural",
"NebulaNinja ๐ ": "en-US-GuyNeural",
"ByteBuster ๐พ": "en-GB-RyanNeural",
"GalacticGopher ๐": "en-AU-WilliamNeural",
"RocketRaccoon ๐": "en-CA-LiamNeural",
"EchoElf ๐ง": "en-US-AnaNeural",
"PhantomFox ๐ฆ": "en-US-BrandonNeural",
"WittyWizard ๐ง": "en-GB-ThomasNeural",
"LunarLlama ๐": "en-AU-FreyaNeural",
"SolarSloth โ๏ธ": "en-CA-LindaNeural",
"AstroAlpaca ๐ฆ": "en-US-ChristopherNeural",
"CyberCoyote ๐บ": "en-GB-ElliotNeural",
"MysticMoose ๐ฆ": "en-AU-JamesNeural",
"GlitchGnome ๐ง": "en-CA-EthanNeural",
"VortexViper ๐": "en-US-AmberNeural",
"ChronoChimp ๐": "en-GB-LibbyNeural"
}
EDGE_TTS_VOICES = list(set(FUN_USERNAMES.values()))
FILE_EMOJIS = {"md": "๐", "mp3": "๐ต", "png": "๐ผ๏ธ", "mp4": "๐ฅ"}
# ๐ Directories (Media at Root)
for d in ["chat_logs", "vote_logs", "audio_logs", "history_logs", "audio_cache"]:
os.makedirs(d, exist_ok=True)
CHAT_DIR = "chat_logs"
VOTE_DIR = "vote_logs"
MEDIA_DIR = "."
AUDIO_CACHE_DIR = "audio_cache"
AUDIO_DIR = "audio_logs"
STATE_FILE = "user_state.txt"
CHAT_FILE = os.path.join(CHAT_DIR, "global_chat.md")
QUOTE_VOTES_FILE = os.path.join(VOTE_DIR, "quote_votes.md")
IMAGE_VOTES_FILE = os.path.join(VOTE_DIR, "image_votes.md")
HISTORY_FILE = os.path.join(VOTE_DIR, "vote_history.md")
# ๐ API Keys
load_dotenv()
anthropic_key = os.getenv('ANTHROPIC_API_KEY', st.secrets.get('ANTHROPIC_API_KEY', ""))
openai_api_key = os.getenv('OPENAI_API_KEY', st.secrets.get('OPENAI_API_KEY', ""))
openai_client = openai.OpenAI(api_key=openai_api_key)
# ๐ Timestamp Helper
def format_timestamp_prefix(username=""):
central = pytz.timezone('US/Central')
now = datetime.now(central)
return f"{now.strftime('%Y%m%d_%H%M%S')}-by-{username}"
# ๐ Performance Timer
class PerformanceTimer:
def __init__(self, name):
self.name, self.start = name, None
def __enter__(self):
self.start = time.time()
return self
def __exit__(self, *args):
duration = time.time() - self.start
st.session_state['operation_timings'][self.name] = duration
st.session_state['performance_metrics'][self.name].append(duration)
# ๐๏ธ Session State Init
def init_session_state():
defaults = {
'server_running': False, 'server_task': None, 'active_connections': {},
'media_notifications': [], 'last_chat_update': 0, 'displayed_chat_lines': [],
'message_text': "", 'audio_cache': {}, 'pasted_image_data': None,
'quote_line': None, 'refresh_rate': 5, 'base64_cache': {},
'transcript_history': [], 'last_transcript': "", 'image_hashes': set(),
'tts_voice': "en-US-AriaNeural", 'chat_history': [], 'marquee_settings': {
"background": "#1E1E1E", "color": "#FFFFFF", "font-size": "14px",
"animationDuration": "20s", "width": "100%", "lineHeight": "35px"
}, 'operation_timings': {}, 'performance_metrics': defaultdict(list),
'enable_audio': True, 'download_link_cache': {}, 'username': None,
'autosend': True, 'autosearch': True, 'last_message': "", 'last_query': "",
'mp3_files': {}, 'timer_start': time.time(), 'quote_index': 0,
'quote_source': "famous", 'last_sent_transcript': "", 'old_val': None
}
for k, v in defaults.items():
if k not in st.session_state:
st.session_state[k] = v
# ๐๏ธ Marquee Helpers
def update_marquee_settings_ui():
st.sidebar.markdown("### ๐ฏ Marquee Settings")
cols = st.sidebar.columns(2)
with cols[0]:
st.session_state['marquee_settings']['background'] = st.color_picker("๐จ Background", "#1E1E1E")
st.session_state['marquee_settings']['color'] = st.color_picker("โ๏ธ Text", "#FFFFFF")
with cols[1]:
st.session_state['marquee_settings']['font-size'] = f"{st.slider('๐ Size', 10, 24, 14)}px"
st.session_state['marquee_settings']['animationDuration'] = f"{st.slider('โฑ๏ธ Speed', 1, 20, 20)}s"
def display_marquee(text, settings, key_suffix=""):
truncated = text[:280] + "..." if len(text) > 280 else text
streamlit_marquee(content=truncated, **settings, key=f"marquee_{key_suffix}")
st.write("")
# ๐ Text & File Helpers
def clean_text_for_tts(text):
return re.sub(r'[#*!\[\]]+', '', ' '.join(text.split()))[:200] or "No text"
def clean_text_for_filename(text):
return '_'.join(re.sub(r'[^\w\s-]', '', text.lower()).split())[:200]
def get_high_info_terms(text, top_n=10):
stop_words = {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with'}
words = re.findall(r'\b\w+(?:-\w+)*\b', text.lower())
bi_grams = [' '.join(pair) for pair in zip(words, words[1:])]
filtered = [t for t in words + bi_grams if t not in stop_words and len(t.split()) <= 2]
return [t for t, _ in Counter(filtered).most_common(top_n)]
def generate_filename(prompt, username, file_type="md"):
timestamp = format_timestamp_prefix(username)
hash_val = hashlib.md5(prompt.encode()).hexdigest()[:8]
return f"{timestamp}-{hash_val}.{file_type}"
def create_file(prompt, username, file_type="md"):
filename = generate_filename(prompt, username, file_type)
with open(filename, 'w', encoding='utf-8') as f:
f.write(prompt)
return filename
def get_download_link(file, file_type="mp3"):
cache_key = f"dl_{file}"
if cache_key not in st.session_state['download_link_cache']:
with open(file, "rb") as f:
b64 = base64.b64encode(f.read()).decode()
mime_types = {"mp3": "audio/mpeg", "png": "image/png", "mp4": "video/mp4", "md": "text/markdown"}
st.session_state['download_link_cache'][cache_key] = f'<a href="data:{mime_types.get(file_type, "application/octet-stream")};base64,{b64}" download="{os.path.basename(file)}">{FILE_EMOJIS.get(file_type, "Download")} Download {os.path.basename(file)}</a>'
return st.session_state['download_link_cache'][cache_key]
def save_username(username):
try:
with open(STATE_FILE, 'w') as f:
f.write(username)
except Exception as e:
print(f"Failed to save username: {e}")
def load_username():
if os.path.exists(STATE_FILE):
try:
with open(STATE_FILE, 'r') as f:
return f.read().strip()
except Exception as e:
print(f"Failed to load username: {e}")
return None
def concatenate_markdown_files():
md_files = sorted(glob.glob("*.md"), key=os.path.getmtime, reverse=True)
all_md_content = ""
for md_file in md_files:
with open(md_file, 'r', encoding='utf-8') as f:
all_md_content += f.read() + "\n\n---\n\n"
return all_md_content.strip()
# ๐ถ Audio Processing
async def async_edge_tts_generate(text, voice, username, rate=0, pitch=0, file_format="mp3"):
cache_key = f"{text[:100]}_{voice}_{rate}_{pitch}_{file_format}"
if cache_key in st.session_state['audio_cache']:
return st.session_state['audio_cache'][cache_key], 0
start_time = time.time()
text = clean_text_for_tts(text)
if not text or text == "No text":
print(f"Skipping audio generation for empty/invalid text: '{text}'")
return None, 0
filename = f"{format_timestamp_prefix(username)}-{hashlib.md5(text.encode()).hexdigest()[:8]}.{file_format}"
try:
communicate = edge_tts.Communicate(text, voice, rate=f"{rate:+d}%", pitch=f"{pitch:+d}Hz")
await communicate.save(filename)
st.session_state['audio_cache'][cache_key] = filename
return filename, time.time() - start_time
except edge_tts.exceptions.NoAudioReceived as e:
print(f"No audio received for text: '{text}' with voice: {voice}. Error: {e}")
return None, 0
except Exception as e:
print(f"Error generating audio for text: '{text}' with voice: {voice}. Error: {e}")
return None, 0
def play_and_download_audio(file_path):
if file_path and os.path.exists(file_path):
st.audio(file_path)
st.markdown(get_download_link(file_path), unsafe_allow_html=True)
def load_mp3_viewer():
mp3_files = sorted(glob.glob(f"*.mp3"), key=os.path.getmtime, reverse=True)
for mp3 in mp3_files:
filename = os.path.basename(mp3)
if filename not in st.session_state['mp3_files']:
st.session_state['mp3_files'][filename] = mp3
async def save_chat_entry(username, message, voice, is_markdown=False):
if not message.strip() or message == st.session_state.last_transcript:
return None, None
central = pytz.timezone('US/Central')
timestamp = datetime.now(central).strftime("%Y-%m-%d %H:%M:%S")
entry = f"[{timestamp}] {username} ({voice}): {message}" if not is_markdown else f"[{timestamp}] {username} ({voice}):\n```markdown\n{message}\n```"
md_file = create_file(entry, username, "md")
with open(CHAT_FILE, 'a') as f:
f.write(f"{entry}\n")
audio_file, _ = await async_edge_tts_generate(message, voice, username)
if audio_file:
with open(HISTORY_FILE, 'a') as f:
f.write(f"[{timestamp}] {username}: Audio - {audio_file}\n")
st.session_state['mp3_files'][os.path.basename(audio_file)] = audio_file
await broadcast_message(f"{username}|{message}", "chat")
st.session_state.last_chat_update = time.time()
st.session_state.chat_history.append(entry)
st.session_state.last_transcript = message # Update last processed transcript
return md_file, audio_file
async def load_chat():
if not os.path.exists(CHAT_FILE):
with open(CHAT_FILE, 'a') as f:
f.write(f"# {START_ROOM} Chat\n\nWelcome to the cosmic hub! ๐ค\n")
with open(CHAT_FILE, 'r') as f:
content = f.read().strip()
lines = content.split('\n')
# Remove duplicates and empty lines
unique_lines = list(dict.fromkeys(line for line in lines if line.strip()))
numbered_content = "\n".join(f"{i+1}. {line}" for i, line in enumerate(unique_lines))
return numbered_content
# Claude Search Function
async def perform_claude_search(query, username):
if not query.strip() or query == st.session_state.last_transcript:
return None, None
client = anthropic.Anthropic(api_key=anthropic_key)
response = client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1000,
messages=[{"role": "user", "content": query}]
)
result = response.content[0].text
st.markdown(f"### Claude's Reply ๐ง \n{result}")
# Save to chat history with audio
voice = FUN_USERNAMES.get(username, "en-US-AriaNeural")
md_file, audio_file = await save_chat_entry(username, f"Claude Search: {query}\nResponse: {result}", voice, True)
return md_file, audio_file
# ArXiv Search Function
async def perform_arxiv_search(query, username):
if not query.strip() or query == st.session_state.last_transcript:
return None, None
# Step 1: Claude Search
client = anthropic.Anthropic(api_key=anthropic_key)
claude_response = client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1000,
messages=[{"role": "user", "content": query}]
)
claude_result = claude_response.content[0].text
st.markdown(f"### Claude's Reply ๐ง \n{claude_result}")
# Step 2: Feed Claude result into ArXiv
enhanced_query = f"{query}\n\n{claude_result}"
gradio_client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
refs = gradio_client.predict(
enhanced_query, 10, "Semantic Search", "mistralai/Mixtral-8x7B-Instruct-v0.1", api_name="/update_with_rag_md"
)[0]
result = f"๐ {enhanced_query}\n\n{refs}"
st.markdown(f"### ArXiv Results ๐\n{result}")
# Save to chat history with audio
voice = FUN_USERNAMES.get(username, "en-US-AriaNeural")
md_file, audio_file = await save_chat_entry(username, f"ArXiv Search: {query}\nClaude Response: {claude_result}\nArXiv Results: {refs}", voice, True)
return md_file, audio_file
async def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=False, useArxiv=True, useArxivAudio=False):
start = time.time()
client = anthropic.Anthropic(api_key=anthropic_key)
response = client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1000,
messages=[{"role": "user", "content": q}]
)
st.write("Claude's reply ๐ง :")
st.markdown(response.content[0].text)
result = response.content[0].text
md_file = create_file(result, "System", "md")
audio_file, _ = await async_edge_tts_generate(result, st.session_state['tts_voice'], "System")
st.subheader("๐ Main Response Audio")
play_and_download_audio(audio_file)
if useArxiv:
q = q + result
st.write('Running Arxiv RAG with Claude inputs.')
gradio_client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
refs = gradio_client.predict(
q, 10, "Semantic Search", "mistralai/Mixtral-8x7B-Instruct-v0.1", api_name="/update_with_rag_md"
)[0]
result = f"๐ {q}\n\n{refs}"
md_file = create_file(result, "System", "md")
audio_file, _ = await async_edge_tts_generate(result, st.session_state['tts_voice'], "System")
st.subheader("๐ ArXiv Response Audio")
play_and_download_audio(audio_file)
papers = parse_arxiv_refs(refs)
if papers and useArxivAudio:
await create_paper_audio_files(papers, q)
return result, papers
elapsed = time.time() - start
st.write(f"**Total Elapsed:** {elapsed:.2f} s")
return result, []
# ๐ WebSocket Handling
async def websocket_handler(websocket, path):
client_id = str(uuid.uuid4())
room_id = "chat"
if room_id not in st.session_state.active_connections:
st.session_state.active_connections[room_id] = {}
st.session_state.active_connections[room_id][client_id] = websocket
username = st.session_state.get('username', random.choice(list(FUN_USERNAMES.keys())))
chat_content = await load_chat()
if not any(f"Client-{client_id}" in line for line in chat_content.split('\n')):
await save_chat_entry("System ๐", f"{username} has joined {START_ROOM}!", "en-US-AriaNeural")
try:
async for message in websocket:
if '|' in message:
username, content = message.split('|', 1)
voice = FUN_USERNAMES.get(username, "en-US-AriaNeural")
await save_chat_entry(username, content, voice)
else:
await websocket.send("ERROR|Message format: username|content")
except websockets.ConnectionClosed:
await save_chat_entry("System ๐", f"{username} has left {START_ROOM}!", "en-US-AriaNeural")
finally:
if room_id in st.session_state.active_connections and client_id in st.session_state.active_connections[room_id]:
del st.session_state.active_connections[room_id][client_id]
async def broadcast_message(message, room_id):
if room_id in st.session_state.active_connections:
disconnected = []
for client_id, ws in st.session_state.active_connections[room_id].items():
try:
await ws.send(message)
except websockets.ConnectionClosed:
disconnected.append(client_id)
for client_id in disconnected:
if client_id in st.session_state.active_connections[room_id]:
del st.session_state.active_connections[room_id][client_id]
async def run_websocket_server():
if not st.session_state.server_running:
server = await websockets.serve(websocket_handler, '0.0.0.0', 8765)
st.session_state.server_running = True
await server.wait_closed()
def start_websocket_server():
asyncio.run(run_websocket_server())
# ๐ PDF to Audio
class AudioProcessor:
def __init__(self):
self.cache_dir = AUDIO_CACHE_DIR
os.makedirs(self.cache_dir, exist_ok=True)
self.metadata = json.load(open(f"{self.cache_dir}/metadata.json")) if os.path.exists(f"{self.cache_dir}/metadata.json") else {}
def _save_metadata(self):
with open(f"{self.cache_dir}/metadata.json", 'w') as f:
json.dump(self.metadata, f)
async def create_audio(self, text, voice='en-US-AriaNeural'):
cache_key = hashlib.md5(f"{text}:{voice}".encode()).hexdigest()
cache_path = f"{self.cache_dir}/{cache_key}.mp3"
if cache_key in self.metadata and os.path.exists(cache_path):
return cache_path
text = clean_text_for_tts(text)
if not text:
return None
communicate = edge_tts.Communicate(text, voice)
await communicate.save(cache_path)
self.metadata[cache_key] = {'timestamp': datetime.now().isoformat(), 'text_length': len(text), 'voice': voice}
self._save_metadata()
return cache_path
def process_pdf(pdf_file, max_pages, voice, audio_processor):
reader = PdfReader(pdf_file)
total_pages = min(len(reader.pages), max_pages)
texts, audios = [], {}
async def process_page(i, text):
audio_path = await audio_processor.create_audio(text, voice)
if audio_path:
audios[i] = audio_path
for i in range(total_pages):
text = reader.pages[i].extract_text()
texts.append(text)
threading.Thread(target=lambda: asyncio.run(process_page(i, text))).start()
return texts, audios, total_pages
# ๐ ArXiv & AI Lookup
def parse_arxiv_refs(ref_text):
if not ref_text:
return []
papers = []
current = {}
for line in ref_text.split('\n'):
if line.count('|') == 2:
if current:
papers.append(current)
date, title, *_ = line.strip('* ').split('|')
url = re.search(r'(https://arxiv.org/\S+)', line).group(1) if re.search(r'(https://arxiv.org/\S+)', line) else f"paper_{len(papers)}"
current = {'date': date, 'title': title, 'url': url, 'authors': '', 'summary': '', 'full_audio': None, 'download_base64': ''}
elif current:
if not current['authors']:
current['authors'] = line.strip('* ')
else:
current['summary'] += ' ' + line.strip() if current['summary'] else line.strip()
if current:
papers.append(current)
return papers[:20]
def generate_5min_feature_markdown(paper):
title, summary, authors, date, url = paper['title'], paper['summary'], paper['authors'], paper['date'], paper['url']
pdf_url = url.replace("abs", "pdf") + (".pdf" if not url.endswith(".pdf") else "")
wct, sw = len(title.split()), len(summary.split())
terms = get_high_info_terms(summary, 15)
rouge = round((len(terms) / max(sw, 1)) * 100, 2)
mermaid = "```mermaid\nflowchart TD\n" + "\n".join(f' T{i+1}["{t}"] --> T{i+2}["{terms[i+1]}"]' for i in range(len(terms)-1)) + "\n```"
return f"""
## ๐ {title}
**Authors:** {authors} | **Date:** {date} | **Words:** Title: {wct}, Summary: {sw}
**Links:** [Abstract]({url}) | [PDF]({pdf_url})
**Terms:** {', '.join(terms)} | **ROUGE:** {rouge}%
### ๐ค TTF Read Aloud
- **Title:** {title} | **Terms:** {', '.join(terms)} | **ROUGE:** {rouge}%
#### Concepts Graph
{mermaid}
---
"""
def create_detailed_paper_md(papers):
return "# Detailed Summary\n" + "\n".join(generate_5min_feature_markdown(p) for p in papers)
async def create_paper_audio_files(papers, query):
for p in papers:
audio_text = clean_text_for_tts(f"{p['title']} by {p['authors']}. {p['summary']}")
p['full_audio'], _ = await async_edge_tts_generate(audio_text, st.session_state['tts_voice'], p['authors'])
if p['full_audio']:
p['download_base64'] = get_download_link(p['full_audio'])
def save_vote(file, item, user_hash):
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
entry = f"[{timestamp}] {user_hash} voted for {item}"
try:
with open(file, 'a') as f:
f.write(f"{entry}\n")
with open(HISTORY_FILE, 'a') as f:
f.write(f"- {timestamp} - User {user_hash} voted for {item}\n")
return True
except Exception as e:
print(f"Vote save flop: {e}")
return False
def load_votes(file):
if not os.path.exists(file):
with open(file, 'w') as f:
f.write("# Vote Tally\n\nNo votes yet - get clicking! ๐ฑ๏ธ\n")
try:
with open(file, 'r') as f:
lines = f.read().strip().split('\n')
votes = {}
for line in lines[2:]: # Skip header
if line.strip() and 'voted for' in line:
item = line.split('voted for ')[1]
votes[item] = votes.get(item, 0) + 1
return votes
except Exception as e:
print(f"Vote load oopsie: {e}")
return {}
def generate_user_hash():
if 'user_hash' not in st.session_state:
session_id = str(random.getrandbits(128))
hash_object = hashlib.md5(session_id.encode())
st.session_state['user_hash'] = hash_object.hexdigest()[:8]
return st.session_state['user_hash']
async def save_pasted_image(image, username):
img_hash = hashlib.md5(image.tobytes()).hexdigest()[:8]
if img_hash in st.session_state.image_hashes:
return None
timestamp = format_timestamp_prefix(username)
filename = f"{timestamp}-{img_hash}.png"
filepath = filename
image.save(filepath, "PNG")
st.session_state.image_hashes.add(img_hash)
return filepath
# ๐ฆ Zip Files
def create_zip_of_files(md_files, mp3_files, png_files, mp4_files, query):
all_files = md_files + mp3_files + png_files + mp4_files
if not all_files:
return None
terms = get_high_info_terms(" ".join([open(f, 'r', encoding='utf-8').read() if f.endswith('.md') else os.path.splitext(os.path.basename(f))[0].replace('_', ' ') for f in all_files] + [query]), 5)
zip_name = f"{format_timestamp_prefix()}_{'-'.join(terms)[:20]}.zip"
with zipfile.ZipFile(zip_name, 'w') as z:
[z.write(f) for f in all_files]
return zip_name
# ๐ฎ Main Interface
def main():
init_session_state()
load_mp3_viewer()
saved_username = load_username()
if saved_username and saved_username in FUN_USERNAMES:
st.session_state.username = saved_username
if not st.session_state.username:
available = [n for n in FUN_USERNAMES if not any(f"{n} has joined" in l for l in asyncio.run(load_chat()).split('\n'))]
st.session_state.username = random.choice(available or list(FUN_USERNAMES.keys()))
st.session_state.tts_voice = FUN_USERNAMES[st.session_state.username]
asyncio.run(save_chat_entry("System ๐", f"{st.session_state.username} has joined {START_ROOM}!", "en-US-AriaNeural"))
save_username(st.session_state.username)
st.title(f"{Site_Name} for {st.session_state.username}")
update_marquee_settings_ui()
display_marquee(f"๐ Welcome to {START_ROOM} | ๐ค {st.session_state.username}", st.session_state['marquee_settings'], "welcome")
# Speech Component at Top Level
mycomponent = components.declare_component("mycomponent", path="mycomponent")
val = mycomponent(my_input_value="")
if val and val != st.session_state.last_transcript:
val_stripped = val.strip().replace('\n', ' ')
if val_stripped:
voice = FUN_USERNAMES.get(st.session_state.username, "en-US-AriaNeural")
md_file, audio_file = asyncio.run(save_chat_entry(st.session_state.username, val_stripped, voice))
if audio_file:
play_and_download_audio(audio_file)
st.rerun()
tab_main = st.radio("Action:", ["๐ค Chat & Voice", "๐ ArXiv", "๐ PDF to Audio"], horizontal=True, key="tab_main")
useArxiv = st.checkbox("Search ArXiv", True, key="use_arxiv")
useArxivAudio = st.checkbox("ArXiv Audio", False, key="use_arxiv_audio")
st.checkbox("Autosend Chat", value=True, key="autosend")
st.checkbox("Autosearch ArXiv", value=True, key="autosearch")
# ๐ค Chat & Voice
if tab_main == "๐ค Chat & Voice":
st.subheader(f"{START_ROOM} Chat ๐ฌ")
chat_content = asyncio.run(load_chat())
chat_container = st.container()
with chat_container:
st.markdown(chat_content)
message = st.text_input(f"Message as {st.session_state.username}", key="message_input")
paste_result = paste_image_button("๐ Paste Image or Text", key="paste_button_msg")
if paste_result.image_data is not None:
if isinstance(paste_result.image_data, str):
st.session_state.message_text = paste_result.image_data
message = st.text_input(f"Message as {st.session_state.username}", key="message_input_paste", value=st.session_state.message_text)
else:
st.image(paste_result.image_data, caption="Pasted Image")
filename = asyncio.run(save_pasted_image(paste_result.image_data, st.session_state.username))
if filename:
st.session_state.pasted_image_data = filename
if (message and message != st.session_state.last_message) or st.session_state.pasted_image_data:
st.session_state.last_message = message
col_send, col_claude, col_arxiv = st.columns([1, 1, 1])
with col_send:
if st.session_state.autosend or st.button("Send ๐", key="send_button"):
voice = FUN_USERNAMES.get(st.session_state.username, "en-US-AriaNeural")
if message.strip():
md_file, audio_file = asyncio.run(save_chat_entry(st.session_state.username, message, voice, True))
if audio_file:
play_and_download_audio(audio_file)
if st.session_state.pasted_image_data:
asyncio.run(save_chat_entry(st.session_state.username, f"Pasted image: {st.session_state.pasted_image_data}", voice))
st.session_state.pasted_image_data = None
st.session_state.timer_start = time.time()
save_username(st.session_state.username)
st.rerun()
with col_claude:
if st.button("๐ง Claude", key="claude_button"):
voice = FUN_USERNAMES.get(st.session_state.username, "en-US-AriaNeural")
if message.strip():
md_file, audio_file = asyncio.run(perform_claude_search(message, st.session_state.username))
if audio_file:
play_and_download_audio(audio_file)
st.session_state.timer_start = time.time()
save_username(st.session_state.username)
st.rerun()
with col_arxiv:
if st.button("๐ ArXiv", key="arxiv_button"):
voice = FUN_USERNAMES.get(st.session_state.username, "en-US-AriaNeural")
if message.strip():
md_file, audio_file = asyncio.run(perform_arxiv_search(message, st.session_state.username))
if audio_file:
play_and_download_audio(audio_file)
st.session_state.timer_start = time.time()
save_username(st.session_state.username)
st.rerun()
# ๐ ArXiv
elif tab_main == "๐ ArXiv":
st.subheader("๐ Query ArXiv")
q = st.text_input("๐ Query:", key="arxiv_query")
if q and q != st.session_state.last_query:
st.session_state.last_query = q
if st.session_state.autosearch or st.button("๐ Run", key="arxiv_run"):
result, papers = asyncio.run(perform_ai_lookup(q, useArxiv=useArxiv, useArxivAudio=useArxivAudio))
for i, p in enumerate(papers, 1):
with st.expander(f"{i}. ๐ {p['title']}"):
st.markdown(f"**{p['date']} | {p['title']}** โ [Link]({p['url']})")
st.markdown(generate_5min_feature_markdown(p))
if p.get('full_audio'):
play_and_download_audio(p['full_audio'])
# ๐ PDF to Audio
elif tab_main == "๐ PDF to Audio":
audio_processor = AudioProcessor()
pdf_file = st.file_uploader("Choose PDF", "pdf", key="pdf_upload")
max_pages = st.slider('Pages', 1, 100, 10, key="pdf_pages")
if pdf_file:
with st.spinner('Processing...'):
texts, audios, total = process_pdf(pdf_file, max_pages, st.session_state['tts_voice'], audio_processor)
for i, text in enumerate(texts):
with st.expander(f"Page {i+1}"):
st.markdown(text)
while i not in audios:
time.sleep(0.1)
if audios.get(i):
st.audio(audios[i])
st.markdown(get_download_link(audios[i], "mp3"), unsafe_allow_html=True)
voice = FUN_USERNAMES.get(st.session_state.username, "en-US-AriaNeural")
asyncio.run(save_chat_entry(st.session_state.username, f"PDF Page {i+1} converted to audio: {audios[i]}", voice))
# Always Visible Media Gallery
st.header("๐ธ Media Gallery")
all_files = sorted(glob.glob("*.md") + glob.glob("*.mp3") + glob.glob("*.png") + glob.glob("*.mp4"), key=os.path.getmtime, reverse=True)
md_files = [f for f in all_files if f.endswith('.md')]
mp3_files = [f for f in all_files if f.endswith('.mp3')]
png_files = [f for f in all_files if f.endswith('.png')]
mp4_files = [f for f in all_files if f.endswith('.mp4')]
st.subheader("All Submitted Text")
all_md_content = concatenate_markdown_files()
st.markdown(all_md_content)
st.subheader("๐ต Audio (MP3)")
for mp3 in mp3_files:
with st.expander(os.path.basename(mp3)):
st.audio(mp3)
st.markdown(get_download_link(mp3, "mp3"), unsafe_allow_html=True)
st.subheader("๐ผ๏ธ Images (PNG)")
for png in png_files:
with st.expander(os.path.basename(png)):
st.image(png, use_container_width=True)
st.markdown(get_download_link(png, "png"), unsafe_allow_html=True)
st.subheader("๐ฅ Videos (MP4)")
for mp4 in mp4_files:
with st.expander(os.path.basename(mp4)):
st.video(mp4)
st.markdown(get_download_link(mp4, "mp4"), unsafe_allow_html=True)
# ๐๏ธ Sidebar with Dialog and Audio
st.sidebar.subheader("Voice Settings")
new_username = st.sidebar.selectbox("Change Name/Voice", list(FUN_USERNAMES.keys()), index=list(FUN_USERNAMES.keys()).index(st.session_state.username), key="username_select")
if new_username != st.session_state.username:
asyncio.run(save_chat_entry("System ๐", f"{st.session_state.username} changed to {new_username}", "en-US-AriaNeural"))
st.session_state.username, st.session_state.tts_voice = new_username, FUN_USERNAMES[new_username]
st.session_state.timer_start = time.time()
save_username(st.session_state.username)
st.rerun()
st.sidebar.markdown("### ๐ฌ Chat Dialog & Media")
chat_content = asyncio.run(load_chat())
st.sidebar.markdown(chat_content)
st.sidebar.subheader("Vote Totals")
chat_votes = load_votes(QUOTE_VOTES_FILE)
image_votes = load_votes(IMAGE_VOTES_FILE)
for item, count in chat_votes.items():
st.sidebar.write(f"{item}: {count} votes")
for image, count in image_votes.items():
st.sidebar.write(f"{image}: {count} votes")
st.sidebar.markdown("### ๐ File History")
for f in all_files[:10]:
st.sidebar.write(f"{FILE_EMOJIS.get(f.split('.')[-1], '๐')} {os.path.basename(f)}")
if st.sidebar.button("โฌ๏ธ Zip All", key="zip_all"):
zip_name = create_zip_of_files(md_files, mp3_files, png_files, mp4_files, "latest_query")
if zip_name:
st.sidebar.markdown(get_download_link(zip_name, "zip"), unsafe_allow_html=True)
# Start WebSocket server in a separate thread
if not st.session_state.server_running and not st.session_state.server_task:
st.session_state.server_task = threading.Thread(target=start_websocket_server, daemon=True)
st.session_state.server_task.start()
if __name__ == "__main__":
main() |