File size: 28,468 Bytes
1749dd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 |
import streamlit as st
import asyncio
import websockets
import uuid
import argparse
from datetime import datetime
import os
import random
import time
import hashlib
from PIL import Image
import glob
import base64
import io
import streamlit.components.v1 as components
import edge_tts
from audio_recorder_streamlit import audio_recorder
import nest_asyncio
import re
from streamlit_paste_button import paste_image_button
import pytz
import shutil
import anthropic
import openai
from PyPDF2 import PdfReader
import threading
import json
import zipfile
from gradio_client import Client
from dotenv import load_dotenv
from streamlit_marquee import streamlit_marquee
# Patch for nested async
nest_asyncio.apply()
# Static config
icons = 'π€π§ π¬π'
START_ROOM = "Sector π"
# Page setup
st.set_page_config(
page_title="π€π§ MMO Chat & Research Brainππ¬",
page_icon=icons,
layout="wide",
initial_sidebar_state="auto"
)
# Funky usernames with voices
FUN_USERNAMES = {
"CosmicJester π": "en-US-AriaNeural",
"PixelPanda πΌ": "en-US-JennyNeural",
"QuantumQuack π¦": "en-GB-SoniaNeural",
"StellarSquirrel πΏοΈ": "en-AU-NatashaNeural",
"GizmoGuru βοΈ": "en-CA-ClaraNeural",
"NebulaNinja π ": "en-US-GuyNeural",
"ByteBuster πΎ": "en-GB-RyanNeural",
"GalacticGopher π": "en-AU-WilliamNeural",
"RocketRaccoon π": "en-CA-LiamNeural",
"EchoElf π§": "en-US-AnaNeural",
"PhantomFox π¦": "en-US-BrandonNeural",
"WittyWizard π§": "en-GB-ThomasNeural",
"LunarLlama π": "en-AU-FreyaNeural",
"SolarSloth βοΈ": "en-CA-LindaNeural",
"AstroAlpaca π¦": "en-US-ChristopherNeural",
"CyberCoyote πΊ": "en-GB-ElliotNeural",
"MysticMoose π¦": "en-AU-JamesNeural",
"GlitchGnome π§": "en-CA-EthanNeural",
"VortexViper π": "en-US-AmberNeural",
"ChronoChimp π": "en-GB-LibbyNeural"
}
# Directories
CHAT_DIR = "chat_logs"
VOTE_DIR = "vote_logs"
AUDIO_DIR = "audio_logs"
HISTORY_DIR = "history_logs"
MEDIA_DIR = "media_files"
os.makedirs(CHAT_DIR, exist_ok=True)
os.makedirs(VOTE_DIR, exist_ok=True)
os.makedirs(AUDIO_DIR, exist_ok=True)
os.makedirs(HISTORY_DIR, exist_ok=True)
os.makedirs(MEDIA_DIR, exist_ok=True)
CHAT_FILE = os.path.join(CHAT_DIR, "global_chat.md")
QUOTE_VOTES_FILE = os.path.join(VOTE_DIR, "quote_votes.md")
MEDIA_VOTES_FILE = os.path.join(VOTE_DIR, "media_votes.md")
HISTORY_FILE = os.path.join(HISTORY_DIR, "chat_history.md")
# Unicode digits
UNICODE_DIGITS = {i: f"{i}\uFE0Fβ£" for i in range(10)}
# Unicode fonts
UNICODE_FONTS = [
("Normal", lambda x: x),
("Bold", lambda x: "".join(chr(ord(c) + 0x1D400 - 0x41) if 'A' <= c <= 'Z' else chr(ord(c) + 0x1D41A - 0x61) if 'a' <= c <= 'z' else c for c in x)),
# Add other font styles similarly...
]
# Global state
if 'server_running' not in st.session_state:
st.session_state.server_running = False
if 'server_task' not in st.session_state:
st.session_state.server_task = None
if 'active_connections' not in st.session_state:
st.session_state.active_connections = {}
if 'media_notifications' not in st.session_state:
st.session_state.media_notifications = []
if 'last_chat_update' not in st.session_state:
st.session_state.last_chat_update = 0
if 'displayed_chat_lines' not in st.session_state:
st.session_state.displayed_chat_lines = []
if 'message_text' not in st.session_state:
st.session_state.message_text = ""
if 'audio_cache' not in st.session_state:
st.session_state.audio_cache = {}
if 'pasted_image_data' not in st.session_state:
st.session_state.pasted_image_data = None
if 'quote_line' not in st.session_state:
st.session_state.quote_line = None
if 'refresh_rate' not in st.session_state:
st.session_state.refresh_rate = 5
if 'base64_cache' not in st.session_state:
st.session_state.base64_cache = {}
if 'transcript_history' not in st.session_state:
st.session_state.transcript_history = []
if 'last_transcript' not in st.session_state:
st.session_state.last_transcript = ""
if 'image_hashes' not in st.session_state:
st.session_state.image_hashes = set()
if 'tts_voice' not in st.session_state:
st.session_state.tts_voice = "en-US-AriaNeural"
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
# API Keys
load_dotenv()
anthropic_key = os.getenv('ANTHROPIC_API_KEY', "")
openai_api_key = os.getenv('OPENAI_API_KEY', "")
if 'ANTHROPIC_API_KEY' in st.secrets:
anthropic_key = st.secrets['ANTHROPIC_API_KEY']
if 'OPENAI_API_KEY' in st.secrets:
openai_api_key = st.secrets['OPENAI_API_KEY']
openai_client = openai.OpenAI(api_key=openai_api_key)
# Timestamp formatting
def format_timestamp_prefix(username):
central = pytz.timezone('US/Central')
now = datetime.now(central)
return f"{now.strftime('%I-%M-%p-ct-%m-%d-%Y')}-by-{username}"
# Image hash computation
def compute_image_hash(image_data):
if isinstance(image_data, Image.Image):
img_byte_arr = io.BytesIO()
image_data.save(img_byte_arr, format='PNG')
img_bytes = img_byte_arr.getvalue()
else:
img_bytes = image_data
return hashlib.md5(img_bytes).hexdigest()[:8]
# Node naming
def get_node_name():
parser = argparse.ArgumentParser(description='Start a chat node')
parser.add_argument('--node-name', type=str, default=None)
parser.add_argument('--port', type=int, default=8501)
args = parser.parse_args()
return args.node_name or f"node-{uuid.uuid4().hex[:8]}", args.port
# Action logger
def log_action(username, action):
if 'action_log' not in st.session_state:
st.session_state.action_log = {}
user_log = st.session_state.action_log.setdefault(username, {})
current_time = time.time()
user_log = {k: v for k, v in user_log.items() if current_time - v < 10}
st.session_state.action_log[username] = user_log
if action not in user_log:
central = pytz.timezone('US/Central')
with open(HISTORY_FILE, 'a') as f:
f.write(f"[{datetime.now(central).strftime('%Y-%m-%d %H:%M:%S')}] {username}: {action}\n")
user_log[action] = current_time
# Text cleaning for TTS
def clean_text_for_tts(text):
cleaned = re.sub(r'[#*!\[\]]+', '', text)
cleaned = ' '.join(cleaned.split())
return cleaned[:200] if cleaned else "No text to speak"
# Chat saver
async def save_chat_entry(username, message, is_markdown=False):
await asyncio.to_thread(log_action, username, "π¬π - Chat saver")
central = pytz.timezone('US/Central')
timestamp = datetime.now(central).strftime("%Y-%m-%d %H:%M:%S")
if is_markdown:
entry = f"[{timestamp}] {username}:\n```markdown\n{message}\n```"
else:
entry = f"[{timestamp}] {username}: {message}"
await asyncio.to_thread(lambda: open(CHAT_FILE, 'a').write(f"{entry}\n"))
voice = FUN_USERNAMES.get(username, "en-US-AriaNeural")
cleaned_message = clean_text_for_tts(message)
audio_file = await async_edge_tts_generate(cleaned_message, voice)
if audio_file:
with open(HISTORY_FILE, 'a') as f:
f.write(f"[{timestamp}] {username}: Audio generated - {audio_file}\n")
await broadcast_message(f"{username}|{message}", "chat")
st.session_state.last_chat_update = time.time()
return audio_file
# Chat loader
async def load_chat():
username = st.session_state.get('username', 'System π')
await asyncio.to_thread(log_action, username, "ππ - Chat loader")
if not os.path.exists(CHAT_FILE):
await asyncio.to_thread(lambda: open(CHAT_FILE, 'a').write(f"# {START_ROOM} Chat\n\nWelcome to the cosmic hub! π€\n"))
with open(CHAT_FILE, 'r') as f:
content = await asyncio.to_thread(f.read)
return content
# Audio generator
async def async_edge_tts_generate(text, voice, rate=0, pitch=0, file_format="mp3"):
await asyncio.to_thread(log_action, st.session_state.get('username', 'System π'), "πΆπ - Audio maker")
timestamp = format_timestamp_prefix(st.session_state.get('username', 'System π'))
filename = f"{timestamp}.{file_format}"
filepath = os.path.join(AUDIO_DIR, filename)
communicate = edge_tts.Communicate(text, voice, rate=f"{rate:+d}%", pitch=f"{pitch:+d}Hz")
try:
await communicate.save(filepath)
return filepath if os.path.exists(filepath) else None
except edge_tts.exceptions.NoAudioReceived:
with open(HISTORY_FILE, 'a') as f:
central = pytz.timezone('US/Central')
f.write(f"[{datetime.now(central).strftime('%Y-%m-%d %H:%M:%S')}] Audio failed for '{text}'\n")
return None
# Audio player
def play_and_download_audio(file_path):
if file_path and os.path.exists(file_path):
st.audio(file_path)
if file_path not in st.session_state.base64_cache:
with open(file_path, "rb") as f:
b64 = base64.b64encode(f.read()).decode()
st.session_state.base64_cache[file_path] = b64
b64 = st.session_state.base64_cache[file_path]
dl_link = f'<a href="data:audio/mpeg;base64,{b64}" download="{os.path.basename(file_path)}">π΅ Download {os.path.basename(file_path)}</a>'
st.markdown(dl_link, unsafe_allow_html=True)
# Websocket handler
async def websocket_handler(websocket, path):
username = st.session_state.get('username', 'System π')
await asyncio.to_thread(log_action, username, "ππ - Websocket handler")
try:
client_id = str(uuid.uuid4())
room_id = "chat"
st.session_state.active_connections.setdefault(room_id, {})[client_id] = websocket
chat_content = await load_chat()
username = st.session_state.get('username', random.choice(list(FUN_USERNAMES.keys())))
if not any(f"Client-{client_id}" in line for line in chat_content.split('\n')):
await save_chat_entry(f"Client-{client_id}", f"{username} has joined {START_ROOM}!")
async for message in websocket:
parts = message.split('|', 1)
if len(parts) == 2:
username, content = parts
await save_chat_entry(username, content)
except websockets.ConnectionClosed:
pass
finally:
if room_id in st.session_state.active_connections and client_id in st.session_state.active_connections[room_id]:
del st.session_state.active_connections[room_id][client_id]
# Message broadcaster
async def broadcast_message(message, room_id):
await asyncio.to_thread(log_action, st.session_state.get('username', 'System π'), "π’βοΈ - Message broadcaster")
if room_id in st.session_state.active_connections:
disconnected = []
for client_id, ws in st.session_state.active_connections[room_id].items():
try:
await ws.send(message)
except websockets.ConnectionClosed:
disconnected.append(client_id)
for client_id in disconnected:
del st.session_state.active_connections[room_id][client_id]
# Server starter
async def run_websocket_server():
await asyncio.to_thread(log_action, st.session_state.get('username', 'System π'), "π₯οΈπ - Server starter")
if not st.session_state.server_running:
server = await websockets.serve(websocket_handler, '0.0.0.0', 8765)
st.session_state.server_running = True
await server.wait_closed()
# PDF to Audio Processor
class AudioProcessor:
def __init__(self):
self.cache_dir = "audio_cache"
os.makedirs(self.cache_dir, exist_ok=True)
self.metadata = self._load_metadata()
def _load_metadata(self):
metadata_file = os.path.join(self.cache_dir, "metadata.json")
return json.load(open(metadata_file)) if os.path.exists(metadata_file) else {}
def _save_metadata(self):
metadata_file = os.path.join(self.cache_dir, "metadata.json")
with open(metadata_file, 'w') as f:
json.dump(self.metadata, f)
async def create_audio(self, text, voice='en-US-AriaNeural'):
cache_key = hashlib.md5(f"{text}:{voice}".encode()).hexdigest()
cache_path = os.path.join(self.cache_dir, f"{cache_key}.mp3")
if cache_key in self.metadata and os.path.exists(cache_path):
return open(cache_path, 'rb').read()
text = text.replace("\n", " ").replace("</s>", " ").strip()
if not text:
return None
communicate = edge_tts.Communicate(text, voice)
await communicate.save(cache_path)
self.metadata[cache_key] = {
'timestamp': datetime.now().isoformat(),
'text_length': len(text),
'voice': voice
}
self._save_metadata()
return open(cache_path, 'rb').read()
def get_download_link(bin_data, filename, size_mb=None):
b64 = base64.b64encode(bin_data).decode()
size_str = f"({size_mb:.1f} MB)" if size_mb else ""
return f'<a href="data:audio/mpeg;base64,{b64}" download="{filename}">π₯ {filename} {size_str}</a>'
def process_pdf(pdf_file, max_pages, voice, audio_processor):
reader = PdfReader(pdf_file)
total_pages = min(len(reader.pages), max_pages)
texts, audios = [], {}
async def process_page(i, text):
audio_data = await audio_processor.create_audio(text, voice)
audios[i] = audio_data
for i in range(total_pages):
text = reader.pages[i].extract_text()
texts.append(text)
threading.Thread(target=lambda: asyncio.run(process_page(i, text))).start()
return texts, audios, total_pages
# AI Lookup
def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=False, useArxiv=True, useArxivAudio=False):
client = anthropic.Anthropic(api_key=anthropic_key)
response = client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1000,
messages=[{"role": "user", "content": q}]
)
result = response.content[0].text
st.markdown("### Claude's reply π§ :")
st.markdown(result)
md_file = create_file(q, result)
audio_file = speak_with_edge_tts(result, st.session_state.tts_voice)
play_and_download_audio(audio_file)
if useArxiv:
q += result
gradio_client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
refs = gradio_client.predict(q, 10, "Semantic Search", "mistralai/Mixtral-8x7B-Instruct-v0.1", api_name="/update_with_rag_md")[0]
result = f"π {q}\n\n{refs}"
md_file, audio_file = save_qa_with_audio(q, result)
play_and_download_audio(audio_file)
papers = parse_arxiv_refs(refs)
if papers and useArxivAudio:
asyncio.run(create_paper_audio_files(papers, q))
return result, papers
return result, []
def create_file(prompt, response, file_type="md"):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{timestamp}_{clean_text_for_filename(prompt[:40] + ' ' + response[:40])}.{file_type}"
with open(filename, 'w', encoding='utf-8') as f:
f.write(prompt + "\n\n" + response)
return filename
def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"):
result = asyncio.run(async_edge_tts_generate(text, voice, rate, pitch, file_format))
return result
def save_qa_with_audio(question, answer, voice=None):
voice = voice or st.session_state.tts_voice
md_file = create_file(question, answer, "md")
audio_file = speak_with_edge_tts(f"{question}\n\nAnswer: {answer}", voice)
return md_file, audio_file
def clean_text_for_filename(text):
text = text.lower()
text = re.sub(r'[^\w\s-]', '', text)
return '_'.join(text.split())[:200]
def parse_arxiv_refs(ref_text):
# Simplified parsing for brevity
return [{"title": line.strip(), "url": "", "authors": "", "summary": "", "full_audio": None, "download_base64": ""} for line in ref_text.split('\n') if line.strip()]
async def create_paper_audio_files(papers, input_question):
for paper in papers:
audio_text = f"{paper['title']}"
audio_file = await async_edge_tts_generate(audio_text, st.session_state.tts_voice)
paper['full_audio'] = audio_file
if audio_file:
with open(audio_file, "rb") as f:
b64 = base64.b64encode(f.read()).decode()
paper['download_base64'] = f'<a href="data:audio/mpeg;base64,{b64}" download="{os.path.basename(audio_file)}">π΅ Download</a>'
# ASR Component HTML (Fixed Audio Chat)
ASR_HTML = """
<html>
<head>
<title>Continuous Speech Demo</title>
<style>
body { font-family: sans-serif; padding: 20px; max-width: 800px; margin: 0 auto; }
button { padding: 10px 20px; margin: 10px 5px; font-size: 16px; }
#status { margin: 10px 0; padding: 10px; background: #e8f5e9; border-radius: 4px; }
#output { white-space: pre-wrap; padding: 15px; background: #f5f5f5; border-radius: 4px; margin: 10px 0; min-height: 100px; max-height: 400px; overflow-y: auto; }
</style>
</head>
<body>
<div>
<button id="start">Start Listening</button>
<button id="stop" disabled>Stop Listening</button>
<button id="clear">Clear Text</button>
</div>
<div id="status">Ready</div>
<div id="output"></div>
<script>
if (!('webkitSpeechRecognition' in window)) {
alert('Speech recognition not supported');
} else {
const recognition = new webkitSpeechRecognition();
const startButton = document.getElementById('start');
const stopButton = document.getElementById('stop');
const clearButton = document.getElementById('clear');
const status = document.getElementById('status');
const output = document.getElementById('output');
let fullTranscript = '';
let lastUpdateTime = Date.now();
recognition.continuous = true;
recognition.interimResults = true;
const startRecognition = () => {
try {
recognition.start();
status.textContent = 'Listening...';
startButton.disabled = true;
stopButton.disabled = false;
} catch (e) {
console.error(e);
status.textContent = 'Error: ' + e.message;
}
};
window.addEventListener('load', () => setTimeout(startRecognition, 1000));
startButton.onclick = startRecognition;
stopButton.onclick = () => {
recognition.stop();
status.textContent = 'Stopped';
startButton.disabled = false;
stopButton.disabled = true;
};
clearButton.onclick = () => {
fullTranscript = '';
output.textContent = '';
sendDataToPython({value: '', dataType: "json"});
};
recognition.onresult = (event) => {
let interimTranscript = '';
let finalTranscript = '';
for (let i = event.resultIndex; i < event.results.length; i++) {
const transcript = event.results[i][0].transcript;
if (event.results[i].isFinal) {
finalTranscript += transcript + '\\n';
} else {
interimTranscript += transcript;
}
}
if (finalTranscript || (Date.now() - lastUpdateTime > 5000)) {
if (finalTranscript) fullTranscript += finalTranscript;
lastUpdateTime = Date.now();
output.textContent = fullTranscript + (interimTranscript ? '... ' + interimTranscript : '');
output.scrollTop = output.scrollHeight;
sendDataToPython({value: fullTranscript, dataType: "json"});
}
};
recognition.onend = () => {
if (!stopButton.disabled) {
try {
recognition.start();
console.log('Restarted recognition');
} catch (e) {
console.error('Failed to restart:', e);
status.textContent = 'Error restarting: ' + e.message;
startButton.disabled = false;
stopButton.disabled = true;
}
}
};
recognition.onerror = (event) => {
console.error('Recognition error:', event.error);
status.textContent = 'Error: ' + event.error;
if (event.error === 'not-allowed' || event.error === 'service-not-allowed') {
startButton.disabled = false;
stopButton.disabled = true;
}
};
}
function sendDataToPython(data) {
window.parent.postMessage({
isStreamlitMessage: true,
type: "streamlit:setComponentValue",
...data
}, "*");
}
window.addEventListener('load', () => {
window.setTimeout(() => {
window.parent.postMessage({
isStreamlitMessage: true,
type: "streamlit:setFrameHeight",
height: document.documentElement.clientHeight
}, "*");
}, 0);
});
</script>
</body>
</html>
"""
# Main execution
def main():
NODE_NAME, port = get_node_name()
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
async def async_interface():
if 'username' not in st.session_state:
chat_content = await load_chat()
available_names = [name for name in FUN_USERNAMES if not any(f"{name} has joined" in line for line in chat_content.split('\n'))]
st.session_state.username = random.choice(available_names) if available_names else random.choice(list(FUN_USERNAMES.keys()))
st.session_state.tts_voice = FUN_USERNAMES[st.session_state.username]
st.markdown(f"**ποΈ Voice**: {st.session_state.tts_voice} π£οΈ for {st.session_state.username}")
st.title(f"π€π§ MMO Chat & Research for {st.session_state.username}ππ¬")
st.markdown(f"Welcome to {START_ROOM} - chat, research, upload, and more! π")
if not st.session_state.server_task:
st.session_state.server_task = loop.create_task(run_websocket_server())
# Tabs
tab_main = st.radio("Action:", ["π€ Chat & Voice", "πΈ Media", "π ArXiv", "π PDF to Audio"], horizontal=True)
useArxiv = st.checkbox("Search Arxiv", value=True)
useArxivAudio = st.checkbox("Generate Arxiv Audio", value=False)
# Chat & Voice Tab
if tab_main == "π€ Chat & Voice":
st.subheader(f"{START_ROOM} Chat π¬")
chat_content = await load_chat()
chat_lines = chat_content.split('\n')
for i, line in enumerate(chat_lines):
if line.strip() and ': ' in line:
st.markdown(line)
if st.button("π’ Speak", key=f"speak_{i}"):
audio_file = await async_edge_tts_generate(clean_text_for_tts(line.split(': ', 1)[1]), st.session_state.tts_voice)
play_and_download_audio(audio_file)
message = st.text_input(f"Message as {st.session_state.username}", key="message_input")
if st.button("Send π") and message.strip():
await save_chat_entry(st.session_state.username, message, is_markdown=True)
st.rerun()
st.subheader("π€ Continuous Speech Input")
asr_component = components.html(ASR_HTML, height=400)
if asr_component and isinstance(asr_component, dict) and 'value' in asr_component:
transcript = asr_component['value'].strip()
if transcript and transcript != st.session_state.last_transcript:
await save_chat_entry(st.session_state.username, transcript, is_markdown=True)
st.session_state.last_transcript = transcript
st.rerun()
# Media Tab with Galleries
elif tab_main == "πΈ Media":
st.header("πΈ Media Gallery")
tabs = st.tabs(["π΅ Audio", "πΌ Images", "π₯ Video"])
with tabs[0]:
st.subheader("π΅ Audio Files")
audio_files = glob.glob(f"{MEDIA_DIR}/*.mp3")
for a in audio_files:
with st.expander(os.path.basename(a)):
play_and_download_audio(a)
with tabs[1]:
st.subheader("πΌ Images")
imgs = glob.glob(f"{MEDIA_DIR}/*.png") + glob.glob(f"{MEDIA_DIR}/*.jpg")
if imgs:
cols = st.columns(3)
for i, f in enumerate(imgs):
with cols[i % 3]:
st.image(f, use_container_width=True)
with tabs[2]:
st.subheader("π₯ Videos")
vids = glob.glob(f"{MEDIA_DIR}/*.mp4")
for v in vids:
with st.expander(os.path.basename(v)):
st.video(v)
uploaded_file = st.file_uploader("Upload Media", type=['png', 'jpg', 'mp4', 'mp3'])
if uploaded_file:
timestamp = format_timestamp_prefix(st.session_state.username)
ext = uploaded_file.name.split('.')[-1]
file_hash = hashlib.md5(uploaded_file.getbuffer()).hexdigest()[:8]
filename = f"{timestamp}-{file_hash}.{ext}"
file_path = os.path.join(MEDIA_DIR, filename)
with open(file_path, 'wb') as f:
f.write(uploaded_file.getbuffer())
await save_chat_entry(st.session_state.username, f"Uploaded media: {file_path}")
st.rerun()
# ArXiv Tab
elif tab_main == "π ArXiv":
st.subheader("π Query ArXiv")
q = st.text_input("π Query:")
if q and st.button("π Run"):
result, papers = perform_ai_lookup(q, useArxiv=useArxiv, useArxivAudio=useArxivAudio)
for paper in papers:
with st.expander(paper['title']):
st.markdown(f"**Summary**: {paper['summary']}")
if paper['full_audio']:
play_and_download_audio(paper['full_audio'])
# PDF to Audio Tab
elif tab_main == "π PDF to Audio":
st.subheader("π PDF to Audio Converter")
audio_processor = AudioProcessor()
uploaded_file = st.file_uploader("Choose a PDF file", "pdf")
max_pages = st.slider('Pages to process', 1, 100, 10)
if uploaded_file:
with st.spinner('Processing PDF...'):
texts, audios, total_pages = process_pdf(uploaded_file, max_pages, st.session_state.tts_voice, audio_processor)
for i, text in enumerate(texts):
with st.expander(f"Page {i+1}"):
st.markdown(text)
while i not in audios:
time.sleep(0.1)
if audios[i]:
st.audio(audios[i], format='audio/mp3')
st.markdown(get_download_link(audios[i], f'page_{i+1}.mp3', len(audios[i]) / (1024 * 1024)), unsafe_allow_html=True)
# Sidebar
st.sidebar.subheader("Voice Settings")
new_username = st.sidebar.selectbox("Change Name/Voice", list(FUN_USERNAMES.keys()), index=list(FUN_USERNAMES.keys()).index(st.session_state.username))
if new_username != st.session_state.username:
await save_chat_entry("System π", f"{st.session_state.username} changed to {new_username}")
st.session_state.username = new_username
st.session_state.tts_voice = FUN_USERNAMES[new_username]
st.rerun()
loop.run_until_complete(async_interface())
if __name__ == "__main__":
main() |