File size: 22,322 Bytes
e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 e987f4a 1749dd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
# ๐ Main App - TalkingAIResearcher with Chat, Voice, Media, ArXiv, and More
import streamlit as st
import asyncio
import websockets
import uuid
import argparse
import os
import random
import time
import hashlib
from PIL import Image
import glob
import base64
import io
import streamlit.components.v1 as components
import edge_tts
from audio_recorder_streamlit import audio_recorder
import nest_asyncio
import re
import pytz
import shutil
import anthropic
import openai
from PyPDF2 import PdfReader
import threading
import json
import zipfile
from gradio_client import Client
from dotenv import load_dotenv
from streamlit_marquee import streamlit_marquee
from datetime import datetime
from collections import defaultdict, Counter
import pandas as pd
# ๐ ๏ธ Patch asyncio for nesting glory
nest_asyncio.apply()
# ๐จ Page Config
st.set_page_config(
page_title="๐ฒTalkingAIResearcher๐",
page_icon="๐ฒ๐",
layout="wide",
initial_sidebar_state="auto"
)
# ๐ Static Config
icons = '๐ค๐ง ๐ฌ๐'
START_ROOM = "Sector ๐"
FUN_USERNAMES = {
"CosmicJester ๐": "en-US-AriaNeural",
"PixelPanda ๐ผ": "en-US-JennyNeural",
"QuantumQuack ๐ฆ": "en-GB-SoniaNeural",
"StellarSquirrel ๐ฟ๏ธ": "en-AU-NatashaNeural",
"GizmoGuru โ๏ธ": "en-CA-ClaraNeural",
"NebulaNinja ๐ ": "en-US-GuyNeural",
"ByteBuster ๐พ": "en-GB-RyanNeural",
"GalacticGopher ๐": "en-AU-WilliamNeural",
"RocketRaccoon ๐": "en-CA-LiamNeural",
"EchoElf ๐ง": "en-US-AnaNeural",
}
EDGE_TTS_VOICES = list(set(FUN_USERNAMES.values())) # ๐๏ธ Voice options
FILE_EMOJIS = {"md": "๐", "mp3": "๐ต", "wav": "๐"}
# ๐ Directories
for d in ["chat_logs", "vote_logs", "audio_logs", "history_logs", "media_files", "audio_cache"]:
os.makedirs(d, exist_ok=True)
CHAT_FILE = "chat_logs/global_chat.md"
HISTORY_FILE = "history_logs/chat_history.md"
MEDIA_DIR = "media_files"
AUDIO_CACHE_DIR = "audio_cache"
# ๐ API Keys
load_dotenv()
anthropic_key = os.getenv('ANTHROPIC_API_KEY', st.secrets.get('ANTHROPIC_API_KEY', ""))
openai_api_key = os.getenv('OPENAI_API_KEY', st.secrets.get('OPENAI_API_KEY', ""))
openai_client = openai.OpenAI(api_key=openai_api_key)
# ๐ Timestamp Helper
def format_timestamp_prefix(username=""):
central = pytz.timezone('US/Central')
now = datetime.now(central)
return f"{now.strftime('%Y%m%d_%H%M%S')}-by-{username}"
# ๐ Performance Timer
class PerformanceTimer:
def __init__(self, name): self.name, self.start = name, None
def __enter__(self): self.start = time.time(); return self
def __exit__(self, *args):
duration = time.time() - self.start
st.session_state['operation_timings'][self.name] = duration
st.session_state['performance_metrics'][self.name].append(duration)
# ๐๏ธ Session State Init
def init_session_state():
defaults = {
'server_running': False, 'server_task': None, 'active_connections': {},
'media_notifications': [], 'last_chat_update': 0, 'displayed_chat_lines': [],
'message_text': "", 'audio_cache': {}, 'pasted_image_data': None,
'quote_line': None, 'refresh_rate': 5, 'base64_cache': {},
'transcript_history': [], 'last_transcript': "", 'image_hashes': set(),
'tts_voice': "en-US-AriaNeural", 'chat_history': [], 'marquee_settings': {
"background": "#1E1E1E", "color": "#FFFFFF", "font-size": "14px",
"animationDuration": "20s", "width": "100%", "lineHeight": "35px"
}, 'operation_timings': {}, 'performance_metrics': defaultdict(list),
'enable_audio': True, 'download_link_cache': {}, 'username': None
}
for k, v in defaults.items():
if k not in st.session_state: st.session_state[k] = v
# ๐๏ธ Marquee Helpers
def update_marquee_settings_ui():
# ๐จ Sidebar marquee controls
st.sidebar.markdown("### ๐ฏ Marquee Settings")
cols = st.sidebar.columns(2)
with cols[0]:
st.session_state['marquee_settings']['background'] = st.color_picker("๐จ Background", "#1E1E1E")
st.session_state['marquee_settings']['color'] = st.color_picker("โ๏ธ Text", "#FFFFFF")
with cols[1]:
st.session_state['marquee_settings']['font-size'] = f"{st.slider('๐ Size', 10, 24, 14)}px"
st.session_state['marquee_settings']['animationDuration'] = f"{st.slider('โฑ๏ธ Speed', 1, 20, 20)}s"
def display_marquee(text, settings, key_suffix=""):
# ๐ Show marquee with truncation
truncated = text[:280] + "..." if len(text) > 280 else text
streamlit_marquee(content=truncated, **settings, key=f"marquee_{key_suffix}")
st.write("")
# ๐ Text & File Helpers
def clean_text_for_tts(text): return re.sub(r'[#*!\[\]]+', '', ' '.join(text.split()))[:200] or "No text"
def clean_text_for_filename(text): return '_'.join(re.sub(r'[^\w\s-]', '', text.lower()).split())[:200]
def get_high_info_terms(text, top_n=10):
stop_words = {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with'}
words = re.findall(r'\b\w+(?:-\w+)*\b', text.lower())
bi_grams = [' '.join(pair) for pair in zip(words, words[1:])]
filtered = [t for t in words + bi_grams if t not in stop_words and len(t.split()) <= 2]
return [t for t, _ in Counter(filtered).most_common(top_n)]
def generate_filename(prompt, response, file_type="md"):
# ๐ Smart filename with info terms
prefix = format_timestamp_prefix()
terms = get_high_info_terms(prompt + " " + response, 5)
snippet = clean_text_for_filename(prompt[:40] + " " + response[:40])
wct, sw = len(prompt.split()), len(response.split())
dur = round((wct + sw) / 2.5)
base = '_'.join(list(dict.fromkeys(terms + [snippet])))[:200 - len(prefix) - len(f"_wct{wct}_sw{sw}_dur{dur}.{file_type}")]
return f"{prefix}{base}_wct{wct}_sw{sw}_dur{dur}.{file_type}"
def create_file(prompt, response, file_type="md"):
# ๐ Save file with Q&A
filename = generate_filename(prompt, response, file_type)
with open(filename, 'w', encoding='utf-8') as f: f.write(prompt + "\n\n" + response)
return filename
def get_download_link(file, file_type="mp3"):
# โฌ๏ธ Cached download link
cache_key = f"dl_{file}"
if cache_key not in st.session_state['download_link_cache']:
with open(file, "rb") as f:
b64 = base64.b64encode(f.read()).decode()
st.session_state['download_link_cache'][cache_key] = f'<a href="data:audio/mpeg;base64,{b64}" download="{os.path.basename(file)}">{FILE_EMOJIS.get(file_type, 'โฌ๏ธ')} Download {os.path.basename(file)}</a>'
return st.session_state['download_link_cache'][cache_key]
# ๐ถ Audio Processing
async def async_edge_tts_generate(text, voice, rate=0, pitch=0, file_format="mp3"):
# ๐ต Async TTS with caching
cache_key = f"{text[:100]}_{voice}_{rate}_{pitch}_{file_format}"
if cache_key in st.session_state['audio_cache']: return st.session_state['audio_cache'][cache_key], 0
with PerformanceTimer("tts_generation"):
text = clean_text_for_tts(text)
if not text: return None, 0
filename = f"audio_{format_timestamp_prefix()}_{random.randint(1000, 9999)}.{file_format}"
communicate = edge_tts.Communicate(text, voice, rate=f"{rate:+d}%", pitch=f"{pitch:+d}Hz")
await communicate.save(filename)
st.session_state['audio_cache'][cache_key] = filename
return filename, time.time() - st.session_state['operation_timings']['tts_generation']
def play_and_download_audio(file_path):
# ๐ Play + download
if file_path and os.path.exists(file_path):
st.audio(file_path)
st.markdown(get_download_link(file_path), unsafe_allow_html=True)
async def save_chat_entry(username, message, is_markdown=False):
# ๐ฌ Save chat with audio
central = pytz.timezone('US/Central')
timestamp = datetime.now(central).strftime("%Y-%m-%d %H:%M:%S")
entry = f"[{timestamp}] {username}: {message}" if not is_markdown else f"[{timestamp}] {username}:\n```markdown\n{message}\n```"
with open(CHAT_FILE, 'a') as f: f.write(f"{entry}\n")
voice = FUN_USERNAMES.get(username, "en-US-AriaNeural")
audio_file, _ = await async_edge_tts_generate(clean_text_for_tts(message), voice)
if audio_file:
with open(HISTORY_FILE, 'a') as f: f.write(f"[{timestamp}] {username}: Audio - {audio_file}\n")
await broadcast_message(f"{username}|{message}", "chat")
st.session_state.last_chat_update = time.time()
return audio_file
async def load_chat():
# ๐ Load chat history
if not os.path.exists(CHAT_FILE):
with open(CHAT_FILE, 'a') as f: f.write(f"# {START_ROOM} Chat\n\nWelcome to the cosmic hub! ๐ค\n")
with open(CHAT_FILE, 'r') as f: return f.read()
# ๐ WebSocket Handling
async def websocket_handler(websocket, path):
# ๐ค Handle WebSocket clients
client_id = str(uuid.uuid4())
room_id = "chat"
st.session_state.active_connections.setdefault(room_id, {})[client_id] = websocket
chat_content = await load_chat()
username = st.session_state.get('username', random.choice(list(FUN_USERNAMES.keys())))
if not any(f"Client-{client_id}" in line for line in chat_content.split('\n')):
await save_chat_entry(f"Client-{client_id}", f"{username} has joined {START_ROOM}!")
try:
async for message in websocket:
username, content = message.split('|', 1)
await save_chat_entry(username, content)
finally:
if room_id in st.session_state.active_connections and client_id in st.session_state.active_connections[room_id]:
del st.session_state.active_connections[room_id][client_id]
async def broadcast_message(message, room_id):
# ๐ข Broadcast to all clients
if room_id in st.session_state.active_connections:
disconnected = []
for client_id, ws in st.session_state.active_connections[room_id].items():
try: await ws.send(message)
except websockets.ConnectionClosed: disconnected.append(client_id)
for client_id in disconnected: del st.session_state.active_connections[room_id][client_id]
async def run_websocket_server():
# ๐ฅ๏ธ Start WebSocket server
if not st.session_state.server_running:
server = await websockets.serve(websocket_handler, '0.0.0.0', 8765)
st.session_state.server_running = True
await server.wait_closed()
# ๐ PDF to Audio
class AudioProcessor:
def __init__(self):
self.cache_dir = AUDIO_CACHE_DIR
os.makedirs(self.cache_dir, exist_ok=True)
self.metadata = json.load(open(f"{self.cache_dir}/metadata.json")) if os.path.exists(f"{self.cache_dir}/metadata.json") else {}
def _save_metadata(self):
with open(f"{self.cache_dir}/metadata.json", 'w') as f: json.dump(self.metadata, f)
async def create_audio(self, text, voice='en-US-AriaNeural'):
# ๐ถ Generate cached audio
cache_key = hashlib.md5(f"{text}:{voice}".encode()).hexdigest()
cache_path = f"{self.cache_dir}/{cache_key}.mp3"
if cache_key in self.metadata and os.path.exists(cache_path):
return open(cache_path, 'rb').read()
text = clean_text_for_tts(text)
if not text: return None
communicate = edge_tts.Communicate(text, voice)
await communicate.save(cache_path)
self.metadata[cache_key] = {'timestamp': datetime.now().isoformat(), 'text_length': len(text), 'voice': voice}
self._save_metadata()
return open(cache_path, 'rb').read()
def process_pdf(pdf_file, max_pages, voice, audio_processor):
# ๐ Convert PDF to audio
reader = PdfReader(pdf_file)
total_pages = min(len(reader.pages), max_pages)
texts, audios = [], {}
async def process_page(i, text): audios[i] = await audio_processor.create_audio(text, voice)
for i in range(total_pages):
text = reader.pages[i].extract_text()
texts.append(text)
threading.Thread(target=lambda: asyncio.run(process_page(i, text))).start()
return texts, audios, total_pages
# ๐ ArXiv & AI Lookup
def parse_arxiv_refs(ref_text):
# ๐ Parse ArXiv refs into dicts
if not ref_text: return []
papers = []
current = {}
for line in ref_text.split('\n'):
if line.count('|') == 2:
if current: papers.append(current)
date, title, *_ = line.strip('* ').split('|')
url = re.search(r'(https://arxiv.org/\S+)', line).group(1) if re.search(r'(https://arxiv.org/\S+)', line) else f"paper_{len(papers)}"
current = {'date': date, 'title': title, 'url': url, 'authors': '', 'summary': '', 'full_audio': None, 'download_base64': ''}
elif current:
if not current['authors']: current['authors'] = line.strip('* ')
else: current['summary'] += ' ' + line.strip() if current['summary'] else line.strip()
if current: papers.append(current)
return papers[:20]
def generate_5min_feature_markdown(paper):
# โจ 5-min research paper feature
title, summary, authors, date, url = paper['title'], paper['summary'], paper['authors'], paper['date'], paper['url']
pdf_url = url.replace("abs", "pdf") + (".pdf" if not url.endswith(".pdf") else "")
wct, sw = len(title.split()), len(summary.split())
terms = get_high_info_terms(summary, 15)
rouge = round((len(terms) / max(sw, 1)) * 100, 2)
mermaid = "```mermaid\nflowchart TD\n" + "\n".join(f' T{i+1}["{t}"] --> T{i+2}["{terms[i+1]}"]' for i in range(len(terms)-1)) + "\n```"
return f"""
## ๐ {title}
**Authors:** {authors} | **Date:** {date} | **Words:** Title: {wct}, Summary: {sw}
**Links:** [Abstract]({url}) | [PDF]({pdf_url})
**Terms:** {', '.join(terms)} | **ROUGE:** {rouge}%
### ๐ค TTF Read Aloud
- **Title:** {title} | **Terms:** {', '.join(terms)} | **ROUGE:** {rouge}%
#### Concepts Graph
{mermaid}
---
"""
def create_detailed_paper_md(papers): return "# Detailed Summary\n" + "\n".join(generate_5min_feature_markdown(p) for p in papers)
async def create_paper_audio_files(papers, query):
# ๐ง Generate paper audio
for p in papers:
audio_text = clean_text_for_tts(f"{p['title']} by {p['authors']}. {p['summary']}")
p['full_audio'], _ = await async_edge_tts_generate(audio_text, st.session_state['tts_voice'])
if p['full_audio']: p['download_base64'] = get_download_link(p['full_audio'])
def perform_ai_lookup(q, useArxiv=True, useArxivAudio=False):
# ๐ฎ AI-powered research
client = anthropic.Anthropic(api_key=anthropic_key)
response = client.messages.create(model="claude-3-sonnet-20240229", max_tokens=1000, messages=[{"role": "user", "content": q}])
result = response.content[0].text
st.markdown("### Claude's Reply ๐ง \n" + result)
md_file = create_file(q, result)
audio_file, _ = await async_edge_tts_generate(result, st.session_state['tts_voice'])
play_and_download_audio(audio_file)
if useArxiv:
q += result
gradio_client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
refs = gradio_client.predict(q, 10, "Semantic Search", "mistralai/Mixtral-8x7B-Instruct-v0.1", api_name="/update_with_rag_md")[0]
result = f"๐ {q}\n\n{refs}"
md_file, audio_file = create_file(q, result), (await async_edge_tts_generate(result, st.session_state['tts_voice']))[0]
play_and_download_audio(audio_file)
papers = parse_arxiv_refs(refs)
if papers and useArxivAudio: await create_paper_audio_files(papers, q)
return result, papers
return result, []
# ๐ฆ Zip Files
def create_zip_of_files(md_files, mp3_files, query):
# ๐ฆ Zip it up
all_files = md_files + mp3_files
if not all_files: return None
terms = get_high_info_terms(" ".join([open(f, 'r', encoding='utf-8').read() if f.endswith('.md') else os.path.splitext(os.path.basename(f))[0].replace('_', ' ') for f in all_files] + [query]), 5)
zip_name = f"{format_timestamp_prefix()}_{'-'.join(terms)[:20]}.zip"
with zipfile.ZipFile(zip_name, 'w') as z: [z.write(f) for f in all_files]
return zip_name
# ๐ฎ Main Interface
async def async_interface():
init_session_state()
if not st.session_state.username:
available = [n for n in FUN_USERNAMES if not any(f"{n} has joined" in l for l in (await load_chat()).split('\n'))]
st.session_state.username = random.choice(available or list(FUN_USERNAMES.keys()))
st.session_state.tts_voice = FUN_USERNAMES[st.session_state.username]
st.title(f"๐ค๐ง MMO Chat & Research for {st.session_state.username}๐๐ฌ")
update_marquee_settings_ui()
display_marquee(f"๐ Welcome to {START_ROOM} | ๐ค {st.session_state.username}", st.session_state['marquee_settings'], "welcome")
if not st.session_state.server_task:
st.session_state.server_task = asyncio.create_task(run_websocket_server())
tab_main = st.radio("Action:", ["๐ค Chat & Voice", "๐ธ Media", "๐ ArXiv", "๐ PDF to Audio"], horizontal=True)
useArxiv, useArxivAudio = st.checkbox("Search ArXiv", True), st.checkbox("ArXiv Audio", False)
# ๐ค Chat & Voice
if tab_main == "๐ค Chat & Voice":
st.subheader(f"{START_ROOM} Chat ๐ฌ")
chat_content = await load_chat()
for i, line in enumerate(chat_content.split('\n')):
if line.strip() and ': ' in line:
st.markdown(line)
if st.button("๐ข Speak", key=f"speak_{i}"):
audio_file, _ = await async_edge_tts_generate(line.split(': ', 1)[1], st.session_state['tts_voice'])
play_and_download_audio(audio_file)
message = st.text_input(f"Message as {st.session_state.username}", key="message_input")
if st.button("Send ๐") and message.strip():
await save_chat_entry(st.session_state.username, message, True)
st.rerun()
st.subheader("๐ค Speech-to-Chat")
speech_component = components.declare_component("speech_component", path="mycomponent")
transcript_data = speech_component(default_value=st.session_state.get('last_transcript', ''))
if transcript_data and 'value' in transcript_data:
transcript = transcript_data['value'].strip()
st.write(f"๐๏ธ You said: {transcript}")
if st.button("Send to Chat"):
await save_chat_entry(st.session_state.username, transcript, True)
st.session_state.last_transcript = transcript
st.rerun()
# ๐ธ Media
elif tab_main == "๐ธ Media":
st.header("๐ธ Media Gallery")
tabs = st.tabs(["๐ต Audio", "๐ผ Images", "๐ฅ Video"])
with tabs[0]:
for a in glob.glob(f"{MEDIA_DIR}/*.mp3"):
with st.expander(os.path.basename(a)): play_and_download_audio(a)
with tabs[1]:
imgs = glob.glob(f"{MEDIA_DIR}/*.png") + glob.glob(f"{MEDIA_DIR}/*.jpg")
if imgs:
cols = st.columns(3)
for i, f in enumerate(imgs): cols[i % 3].image(f, use_container_width=True)
with tabs[2]:
for v in glob.glob(f"{MEDIA_DIR}/*.mp4"):
with st.expander(os.path.basename(v)): st.video(v)
uploaded_file = st.file_uploader("Upload Media", type=['png', 'jpg', 'mp4', 'mp3'])
if uploaded_file:
filename = f"{format_timestamp_prefix(st.session_state.username)}-{hashlib.md5(uploaded_file.getbuffer()).hexdigest()[:8]}.{uploaded_file.name.split('.')[-1]}"
with open(f"{MEDIA_DIR}/{filename}", 'wb') as f: f.write(uploaded_file.getbuffer())
await save_chat_entry(st.session_state.username, f"Uploaded: {filename}")
st.rerun()
# ๐ ArXiv
elif tab_main == "๐ ArXiv":
q = st.text_input("๐ Query:")
if q and st.button("๐ Run"):
result, papers = perform_ai_lookup(q, useArxiv, useArxivAudio)
for i, p in enumerate(papers, 1):
with st.expander(f"{i}. ๐ {p['title']}"):
st.markdown(f"**{p['date']} | {p['title']}** โ [Link]({p['url']})")
st.markdown(generate_5min_feature_markdown(p))
if p.get('full_audio'): play_and_download_audio(p['full_audio'])
# ๐ PDF to Audio
elif tab_main == "๐ PDF to Audio":
audio_processor = AudioProcessor()
pdf_file = st.file_uploader("Choose PDF", "pdf")
max_pages = st.slider('Pages', 1, 100, 10)
if pdf_file:
with st.spinner('Processing...'):
texts, audios, total = process_pdf(pdf_file, max_pages, st.session_state['tts_voice'], audio_processor)
for i, text in enumerate(texts):
with st.expander(f"Page {i+1}"):
st.markdown(text)
while i not in audios: time.sleep(0.1)
if audios[i]:
st.audio(audios[i], format='audio/mp3')
st.markdown(get_download_link(io.BytesIO(audios[i]), "mp3"), unsafe_allow_html=True)
# ๐๏ธ Sidebar
st.sidebar.subheader("Voice Settings")
new_username = st.sidebar.selectbox("Change Name/Voice", list(FUN_USERNAMES.keys()), index=list(FUN_USERNAMES.keys()).index(st.session_state.username))
if new_username != st.session_state.username:
await save_chat_entry("System ๐", f"{st.session_state.username} changed to {new_username}")
st.session_state.username, st.session_state.tts_voice = new_username, FUN_USERNAMES[new_username]
st.rerun()
md_files, mp3_files = glob.glob("*.md"), glob.glob("*.mp3")
st.sidebar.markdown("### ๐ File History")
for f in sorted(md_files + mp3_files, key=os.path.getmtime, reverse=True)[:10]:
st.sidebar.write(f"{FILE_EMOJIS.get(f.split('.')[-1], '๐')} {os.path.basename(f)}")
if st.sidebar.button("โฌ๏ธ Zip All"):
zip_name = create_zip_of_files(md_files, mp3_files, "latest_query")
if zip_name: st.sidebar.markdown(get_download_link(zip_name, "zip"), unsafe_allow_html=True)
def main():
# ๐ Kick it off
asyncio.run(async_interface())
if __name__ == "__main__":
main() |